MOTOROLA
MC6839
FLOATING POINT
ROM

TABLE OF CONTENTS

"{‘ Section Title Page
SECTION 1. INTRODUCTION
1.1 Early Approach to Mathematical Operauon o . e e eee 12
1.2 Programs-in-ROM o e e e ceowe 122
1.3 MC6839 Floating Point (FP) ROM o ™ e W ceesas 12
1.3.1 General .+« v v v o v v v a0 e ss e s 12
1.3.2 PinAssignmment « ¢ & ¢ ¢ ¢ 4 0 o 0. s siemiw 1=3
SECTION 2. STANDARD FLOATING POINT FORMATS

2.1 Introduction . & « ¢ v 0 v v 0 v 00 ... e e s eesese 21
2.2 Normalized Mumbers c e e sesweewye £=1
2.2.1 Single Precision Fonnat c e e e ceccesees o=

2.2.2 Double Precision Format ceeesesss 22

2.2.3 Extended Format ceeesceses 22

2.3 Special Values (Single and Double Memory Format) . . a0 ... 2-3
2:3.1 Zero . ¢ . c s s et s s e e s e ae s e s sensesse &3
2.3.2 Infinity & ¢ ¢ v 4t 4 4 4t e s e e e e e s e 2=3
2.3.3 Small Numbers (DenomaHzed) e e e oy e e e e e e e @mD

2.3.4 Not a Number (NAN) ¢ ¢ o v 0 v v o v e o e e eaoeno. 2-4

2.4 Special Values (Extended Format) & e e e w8 8k e e e e e ERD
2.8.1 ZErD ¢ ¢ ¢ ¢ o s o 2 o o s s e s s 4"s as s e e e e 25

Lo 2.4.2 Infinfty o« « o ¢ ¢ ¢ ¢ ¢ s o e e e i s s v o « e e 25
2.4.3 Denormalized NUMDErS « v o « ¢ v o o o = « « » e e oo 25

2.8 MANS ¢ ¢ ¢« o oo s s e s s o s s s sccssees o5
2.4.5 Unnormalized Mumbers . « « « ¢« v ¢ e s ¢ o o s s s s s . 2=6

2.5 BCD Strings & o ¢ ¢ ¢ ¢ ¢ ¢ s e s e e et c e e s aeceses 26
2.6 Binary INtEgErS « v ¢ ¢ o o o o o o s o 4 o o o oo o oo 27

SECTION 3.
3.1 Introduction 3-1
3.2 Required Operations . . & 3-1
3.3 Extra Operations-. . . . & 3-2
3.4 Architecture 3-2
SECTION 4. WMODES OF OPERATION

4.1 Introduction « o ¢ ¢ ¢ ¢ ¢ e 0 0ttt 00 R
4.2 Rounding Modes « « « « ¢ ¢ ¢ ¢ ¢ o o o o o 2 o oo oo 41
4.2.1 Rounding Precision . . . « e e oo &1

4.2.2 Mo Double Rounding « « o ¢« « ¢ ¢ o« 2 c e e @2

TABLE OF CONTENTS (Continued)

Section Title

4.3 Infinity Closure Modes . .
. 4.3.1 Affine Closure . .
4.3.2 Projective Closure

4.4 Exception Modes .

(R R
“ e e

SECTION 5. FLOATING POINT CONTROL BLOCK

5.1 Introduction . . .
5.2 Control Byte . . .
5.3 Status Byte . . .
5.4 Trap Enable Byte .
55 .
5.6 x

Trap Vector . .
Secondary Status

e ® . w Ae
R
o s e e e
R
o s s 0 s e

o6 o8 o 0
PR
B e
v e b8 & 8

SECTION 6. USER INTERFACE
Introduction

6.1 e
6.2 Operation Opcodes and Entry Points
6.3 Stack Requirements « . .
6.4 Calling Sequence « « « « o o o o &
6.4.1 Register Call
6.4.2 Stack Call . . .

s e 0 s 0 8
R
e e e e
e s e e
ORI T

e e e e

APPENDICES
-~ Operation Descriptions
-- Application Example of the Quadratic Equation
-- Detailed Description of Operations
-- Rounding and Except.ion Checking Routines
Program Details and Stack Frame Description
== Internal Formats

-=- Basic Levels of Precision

2 o M M O O W >
'
'

- Definitions and Abbreviations

SECTION 1
INTRODUCTION

1.1 EARLY APPROACH TO MATHEMATICAL OPERATION

Since the earliest days of computers, it has been obvious that no was cap

of doing all the desired mathematical operations in binary integer arithmetic. Some early
implementations perform fioating point operations as a long string of BCD characters.
Although the accuracy of this approach and the ease of implementation make it a
popular alternative, the speed is too siow for most applications. Even though the BCD ap-
proach is still used today in most BASIC systems and in most systems doing dollars and

cents calculations, most scientific calculations use a binary floating point representa-
tion.

As binary floating point became widely used during the 1960s, each computer manufac-
turer created his own fioating point representation. There was (and is) 2 wide variation in
formats and accuracy which almost guaran(ees that & program executed ©on one com-
puter will get different results if ted on . The i puter

manufacturers improved the representations hat; but each fact still had
a different format and different ways to represent and handle exceptions and errors.

Meanwhlle, research has been pleted which formul an optimal binary floating
point representation. Unfortunately, the existing manufacturers had far too much money
invested in software and hardware to incur the costs of 1o a new dard.
Powerful microprocessors, on the other hand, were in their infancy and the fioating point
"uxpens recognized the opponunlty to ulndavduze @ fioating point format for
microp s. The IEEE 1o add the dard. This !

describes an implementation of I proposed IEEE slandnrd for the M%BOQ
Microprocessor (MPU), which is In u ROM. The inf d in this lis
not a “restatement of the proposed IEEE St I it addresses those areas
that are required by the proposed IEEE standard and those optional areas that are im-
plemented for the MC6809. Specific detalls of the d IEEE dard can be found

In IEEE Proposed Standard for Binary Fioating Point Arithmetic Draft 8.0 (referred to as
the proposed IEEE standard in this manual) which is available from the IEEE.*

Much of the information, and many of the suggesti forthe p d IEEE dard

originated in a series of papers, published by Jerome Coonen at lhe'UnIversity of Califor-
nia at Berkeley, the most recent of which is entitled “Specifications for a Proposed Stan-

dard for Floating Point Arithmetic” and appeared in the January 1880 issue of Computer
magazine.

1.2 PROGRAMS-IN-ROM

From its inception, the MC6803 MPU was designed to support a concept of “ROMable”
software by using an improved instruction set and addressing modes. One way, and to
some extent the only way, to reduce the escalating cost of software was to supply “soft-
ware on silicon.” Since the original cost of deveioping the sofiware can be amortized
over a very large number of parts, the actua! cost of the ROM part is low.

Shortly after completing the MC6808 MPU, Motorola selected fioating point to become
the first Motorola Standard Product ROM (SPR). Fioating point was ulecled beuuse itis
standard software that can be used in many diverse sy ta-
tion of the proposed IEEE standard is sufficiently complex that mlny potenua!
customers would not wish to develop the necessary expertise 1o write their own soft-
ware; however, they would enjoy the advantages of its many benefits.

Hardware implementations of floating point are always much faster (and more expen-
sive) than software implementations. However, the MCB839 Fioating Point ROM
substitutes increased functionality for speed. In addition, the MC6838 Fioating Point

ROM supports all precisions, modes, and operations required or suggested by the pro-
posed IEEE standard.

1.3 MC6832 FLOATING POINT (FP) ROM

1.3.1 General

The MCB83% FP ROM provides fioating point capability for the MC6809 and MCEBOSE
MCUs. It implements the entire proposed IEEE standard providing a relatively simple,
economical, and reliable solution to a wide variety of numerical applications. The
MCB838 FP ROM provides three different formats, namely: single precision, double preci-
sion, and extended. Both the single and double precision formats provide results which
are bit-for-bit reproducible across all proposed IEEE standard implementations. The ex-
tended format provides the extra precision needed for the intermediate results of long
calculations, particularly the implementation of transcendental functions and interest
calculations. All applications benefit from the extensive error checking and well-defined
responses to exceptions, which are strengths of the proposed IEEE standard.

The MC68838 FP ROM takes full advantlge of me d d ar al f of the
MCB808/MCBBOIE MPU. It is position indep and , facilitating its use in
real-time, multi-tasking systems.

“This proposed standard was published In the April 1981 issue of Computer magazine

c

A brief summary of the MC6838 FP ROM Is shown below: !
©® Totally Position Independent
* Operates in any Contiguous 8K Biock of Memory
©® Re-Entrant
® No Use of Absolute RAM
* All Memory References are made Relative 1o the Stack Pointer
® Flexible User Interface
* Operands are Passed to the FP Package by One of Two Methods
1) Machine Repisters are Used as Pointers to the Operands
2) The Operands are Pushed onto the Hardware Stack
© The Latter Method Facilitates the Use of the MCE833 FP ROM in High-Leve!
Language Implementations
Easy to Use Twol/Three Address Architecture
* The User Specifies Addresses of Operands and Result and Need Not be Con-
cerned with any Internal Registers or Intermediate Results
® A Complete implementation of the Proposed IEEE Standard

* Inciudes All Precisions, Modes, and Operations Required or Supgested by the
Standard

* Includes the Following Operations:

Add

Subtract
P Multiply
Divide
Remainder '
Square Root
Integer Part
Absolute Value
Negate
Predicate Compares
Condition Code Compares
Convert Integer— Floating Point
Convert Binary Floating Point—Decimal String

1.3.2 Pin Assignment

The MCB839 FP ROM is housed in one 24-pin BK-by-8 mask programmable ROM: the
MCMBB364. It uses a single 5V power supply and is avallable with access times of 250 or
350 ns. For electrical characteristics, refer to the Advance Information Sheet for the
MCBBA39 (1.5 MHz) and MC6E8B39 (2.0 MH2).

Figure 1-1 shows a pin assignment diagram of the MC6838 FP ROM and Figure 1-2 con-
tains a block diagram of the device.

13

Figure 1-1. Pin Assignment Diagram

Address
Decooe

ZXZzpa2r222
NEaNNovwrroun

LI

Memory
Matr
8182 x B!

1

Three Suste

Butters

™~
»

>

Figure 1-2. MC6838 FP ROM Block Diagram

14

SECTION 2
STANDARD FLOATING POINT FORMATS

2.1 INTRODUCTION

The MC6839 Floating Point ROM (also referred to as the floating point package in this
manual) supports three precisions of fioating point numbers: single, double, and extend-
ed. it supports normalized numbers plus four special types of numbers for each preci-
sion: zeros, infinities, NANs, and denormalized numbers. The following paragraphs
describe how the numbers are represented in user memory for each precision. Also
described are the formats used to represent binary integers and BCD strings.

2.2 NORMALIZED NUMBERS

Normalized numbers are fioating point numbers that are not one of the special types. The
bulk of the numbers in any real program will be normalized numbers. Three different for-
mats are used with normalized numbers, namely: single precision format, double preci-
sion format, and extended format.

2.2.1 Single Precision Format

All single precision numbers are represented in a four byte string as shown below:
11 be— B—>i 23 Bits |

lil Exponent I Significand J

In single precision formats shown above, the exponen! is bllsed by +127. Thatis,anex-
ponent of: 0 is 127, 2is 129, 8nd —21is 125." A g point always
has a 1 1o the left of the binary point; this bit is not explicit in ihe memory formats. This
saves one bit in memory which allows more precision with the same number of bits. In
this specification, the fraction is referred to as a significand in order to indicate that it
has an implied 1.0 added to the fraction. Hence, significands lie in the range

“A biased sxponent makes fiosting point compare sasier to implement since the sxponent and significand can be con-

sicered as a long Intege:. Also, 8n UNSIgnad integer compare can be used 1o caiculate the condition codes rather than a
#ioating subtract.

21

1.0<significand<2.0. S is the sign of the significand. The significand is stored in sign

magnitude rather than twos p form. The ion for the single precision for-
mat representation Is:

X = (- 1)2 x 2(exponent =127) x (1 significand).

8 = sign bit =bit string length of 1.

exponent = biased exponent — bit string length of 8.

significand = bit string length of 23 encoding the significant bits of the number that-

low the binary point, yielding a 24 bit significand digit tield for the
number that always begins “1_".

Examples:
+1.0=1.0x 20 = $3F, B0, 00, 00
+3.0=1.5x21=$40, 40, 00, 00
-1.0= -1.0x20=$BF, B0, 00, 00
+7.0=1.75x 22 = 140, EO, 00, 00
+0.5=1.0x2-1=$3F, 00, 00, 00

2.2.2 Double Precision Format

All double precision numbers are represented in an eight byte string as shown below:
| 1 ke—11 Bits —>t«——52 Bits—!

[sJ Exponent I Significand l

In the double precision format shown above, the exponent is biased by +1023. Inter-
pretation of the format is similar to the single precision format except the bias is + 1023
instead of + 127. The equation for the double p ion format rep ion is:

X=(-1)S x s(exponent —1023) x (1.significand)
Examples:
7.0=1.75x 22 = $40, 1C, 00, 00, 00, 00, 00, 00
16.0 = 1.0 x 24 = $40, 30, 00, 00, 00, 00, 00, 00
30.0 = 1.875 x 24 = $40, 3E, 00, 00, 00, 00, 00, 00
-30.0= —1.875x 24 =$C0, 3E, 00, 00, 00, 00, 00, 00
0.25=1.0x2-2=$3F, DO, 00, 00, 00, 00, 00, 00

2.2.3 Extended Format

Single and double precision formats should be used to represent the majority of fioating
point numbers in the user's system (e.g., storage of arrays). The extended format should
only be used for intermediate calculations such as occur in the evaluation of a complex
expression. In fact, extended format may never be rsqulved by most users; however,
since It is required internally, it is optionally provi arerepresented
in a 10 byte string as shown below:

| 1 b=—15 Bits—sje——84 Bits—>{
s | Exponent |1. Significand |

22

A notable difference between this format and the single and double precision formats is
that the 1.0 is explicitly present in the significand and the exponent contains no bias and
is in twos complement form. The equation for double extended is:
X = (= 1)8 x 2(exponent) x gigniticand
Where the significanc ontains the explicit 1.0.
Examples:
30.0=1.875 x 24 = $00, 04, FO, 00, 00, 00, 00, 00, 00, 00
05=1.0x2-1=$7F, FF, 80, 00, 00, 00, 00, 00, 00, 00
-1.0= —1.0x 20 =$80, 00, 80, 00, 00, 00, 00, 00, 00, 00
384.0x 1.5x 28 =300 08, C0, 00, 00, 00, 00, 00, 00, 00

2.3 SPECIAL VALUES (SINGLE AND DOUBLE MEMORY FORMAT)

No derivable fioating point format can represent the infinite number of possible rea!
numbers, 80 it is very useful if some special numbers are recognized by a floating point
package. These numbers are: +0, =0, <+ infinity, —infinity, very small (aimost zero)
numbers, and in some cases unnormalized b it is also to have a
special format to indicate that the contents of memory do not contain a valid floating
point number. This “not a number" might occur if a variable is defined in a high leve!
fanguage (HLL) and is used before it is initialized with a value. The most positive and
nepative exponents of each format are reserved to represent these special values. How
these special format numbers enter into calculations will be covered in the detailed
description of each operation (Appendix C).

2.3.1 Zero

Zero is represented by a number with both a zero exponent and a zero significand. The
sign is significant and difierentiates between plus or minus zero.

a4 . 3

2.3.2 Infinity

The infinities are represented by @ number with the maximum exponent and a zero
significand. The sign differentiates plus or minus infinity.

[s o] [} |

2.3.3 Small Numbers (Denormalized)

When a number is so small that its exp is the ! ble normal biased
value (1), and it is Impossible to norm.hze the number without further decrementing the
exponent, then the ber b lized. The format for denormalized

23

s has a zero exp and a nonzero significand. Nole that In this Iorm the im-
plicit bit is no longer one but is zero. The interp for s is:
Single: X=(~-1)8 x2= 126 x (0. significand)
Double: X= (= 1)8 x 2= 126 x (0. significand)
Note that the exponent is alwa gs interpreted as 2= 126 for single and 2= 1022 for double
instead of 2- 127 and 2- 1023 as might be expected. This is necessary since the only
way to insure that the implicit bit becomes zero is to right shift the significand (divide by

2) and increment the exponem (mumply by 2). Thus the exponent ends up with the inter-
pretation of 2= 126 or 21022

The format for denormalized numbers is:
I s l 0 J Non-Zero I

Note that zero may be considered a special case of denormalized numbers where the
number is so small that the significand has been reduced to zero. The concept of denor-
malized numbers has perhaps been the most controversial aspect of the proposed IEEE
standard. However, the concept of allowing & number to “gently underfiow” to zero
seems intuitive and straightforward to most inexperienced users who do not have a built-
in bias for some existing fioating point representation.
Examples:

Single: 1.0x 2~ 128=025x2-126=09, 20, 00, 00

Double: 1.0 x 2= 1025 = 0.125 x 2 = 1022 = 00, 02, 00, 00, 00, 00, 00, 00

2.3.4 Not 2 Number (NAN)

The format for NANSs has the largest allowable exponent, 8 nonzero significand, and an
undefined sign. As an implementation feature (not IEEE required), the nonzero fraction
and undefined sign are further defined as shown below:

O 1111 | t | operation Adaress | 00...000 |

d:0=This NAN has never entered into an operation with another NAN.
1=This NAN has entered into an operation with other NANs.

1 :0=This NAN will not necessarily cause an invalid op \ trap when op d upon.
1=This NAN will cause an invalid operation trap when operated upon (trapping NAN).
Operation address:

The 16 bits immediately to the right of the t bit contain the address of the instruc-
tion immediately following the call to the fioating point package of the operation
that caused the NAN to be created. If d (double NAN)is also set, the address is ar-
bitrarily one of the addresses in the two or more participating NANs.

24

2.4 SPECIAL VALUES (EXTENDED FORMAT)

The special values di d below are impl, d using the ded format which

was discussed earlier in this section. As explained before, numbers are represented in
this format as a 10 byte string.

2.4.1 Zero

Zero is represented by a number with the smaliest unbiased exponent and a zero signifi-
cand:

1 be—15 Bits —>te——64 Bits—>!

s Joo..... o000 [} |

2.4.2 Infinity

Infinity has the maximum unbiased exponent and a zero significand:

1 te—15 Bits —>t«——64 Bits—>!
s Jornr ... 1)]

2.4.3 Denormalized Numbers

Denormalized numbers have the smallest unbiased exponent and a nonzero significand:
| 1_be—15 Bits—>t«——64 Bits—>!

r;l 100..... 000 I Nonzero J

The exponent of denormalized extended and internal numbers is — 16384, and has the
value:

(=15 x2-16383 ¢ 0 ¢ 2
Example:
1.0 x 2 - 16387 x 0.125 x 2 — 16384 x 40, 00, 08, 00, 00, 00, 00, 00, 00, 00

24.4 NANs

These have the largest unblased exponem .nd a nonzero significand. The operation ad-
dresses, “t" and “d", are impl ion t and were defined in an earlier
paragraph of this section.

|1 le—15Bits——>! 1 | 1 le—16 Bits——>}e——46 Bits——>!
[e] on..... 1111 | o] 1 [operation Address 00000000

The operation address always appears in the 16 bits immediately to the right of the t bit.

25

2.4.5 Unnormalized Numbers

Unnormalized numbers occur only in extended or format. Un lized b

have an exponent which is greater than the mini: d for the ded for-
mat (l.e., they are not denormalized or normal zero); , the explicit leading signifi-
cand blit is a zero. If the significand Is zero, this is an unnormalized zero. Even though un-
normalized and denormalized numbers are handied similarly in most cases, they should
not be confused. Denormalized numbers are numbers that are very small (have minimum
exponent) and hence have lost some bits of the significance. Unnormalized numbers are
not necessarily small (the exponent may be large or small) but the significand has lost

some bits of significance, hence, the explicit bit and possibly some of the bits to the right
of the explicit bit are zero.

[s]>1oo...ooo]o. signiticand |

Unnormalized numbers cannot be represented (thus, cannot represent a result) for single
precision and double precision formats. Unnormalized numbers can only be created

when denormalized numbers, in single precision or double precision formats, are con-
verted to extended (or internal) formats.

Example:
0.0625 x 22 (unnormalized) = 00, 02, 08, 00, 00, 00, 00, 00, 00, 00

2.5 BCD STRINGS

A BCD string is the input to the BCD-to-FP operation and the output of the FP-to-BCD
operation. All BCD strings are represented by a 26 byte string with the foliowing format:

01 5 6 2425 (Byte #)
[Ee 4 Digit BCD Expone:t‘ sf leigit BCD Frlc!ioglﬂ

se = sign of the exponent. 004g = plus, OF g = minus. (1 byte)
sf =sign of the fraction. 004g = plus, OF 16 = minus. (1 byte)
P =number of fraction digits to the right of the decimal point. (1 byte)

All BCD digits are unpacked and right justified in each byte:

7 0

0000 | oo |

26

The byte ordering of the fraction and exponent is i

't withall M pr
in that the most significant BCD digit Is in the lowest memory address.
Examples:

20=20x100 (p=0)
00 se= +)
00, 00, 00, 00 [exponent =0)
00 sf= +]
00, 00, 00, 00, 00 [fraction=2]
00, 00, 00, 00, 00
00, 00, 00, 00, 00
00, 09, 00, 02
00 p=0)
or 2.0=20,000x 104 (p=0)
OF se= -]
00, 00, 00, 04 exponent = 4]
00 si=+)
00, 00, 00, 00, w [fraction = 200000)
00, 00, 00, 00, 00
00, 00, 00, 00, 02
00, 00, 00, 00
00 lp=0;

)
(The above might be the output of an FP to BCD operation with k=5.)
or20=20x100 (p=10)
00

[se=+
00, 00, 00, 00 [exponent =0)
00 {st=+]
00, 00, 00, 00, 00 [fraction = 20000000000]
00, 00, 00, 02, 00
00, 00, 00, 00, 00
00, 00, 00, 00
0A lp=10)

2.6 BINARY INTEGERS

Two sizes of binary integers are supported: short and double. Short integers are 16 bits
fong and double integers are 32 bits long. The byte ordering is consistent with all
Motorola processors in that the most significant bits are in the lowest address.

2728

SECTION 3
SUPPORTED OPERATIONS

3.1 INTRODUCTION

The supported operations are divided into two groups: those required by the proposed
|EEE standard, and those implemented to support real data types for Motorola Pascal. A

farger number of operations are required by the proposed standard to insure portability
of fioating point algorithms.

3.2 REQUIRED OPERATIONS

The operations required to support the proposed IEEE standard are shown in Table 3-1.
The mnemonic column in Table 3-1 illustrates the suggested mnemonics although, at
present, no Motorola assembler supports them. The opcodes are used when calling the

MCB838 to differentiate the various functions. The method for calling is described in Sec-
tion 6.

All routines shown in Table 3-1, except FMOV and the compares (FCMP, FTCMP, FPCMP,
and FTPCMP), accept arguments of the same precision and generate a result containing
the same precision.

Table 3-1. Required Operations to Support IEEE Standard

Opcode Mnemonic Operation
3 FADD | argi = ergz—resan
o« FSUB g = erg2=resutt
0 FMUL | arg) xarg2—resuh
o5 FDIV argl/arg2—resutt
13 FREM | remander (arg1/arg2i—resut
B FCMP | 8751 - arg2. set condnon codes
cc FICMP | argl - arp2. set condion codes, 1rap on unordered
BE FPCMP | arp) = arg2, atfirm or dsatfrm a predicate
Do FTPCMP | arg1=#7g2, atfirm or disatirm a predicate. trap on unordered
SA FMOV move (of conven) arg2—result
2 FSORT SQuaTe rOO! Brg2—result
“ FINT nieger part of arg2—resuh
% FFIXS H031ng 8192 $hor imege* resuh
® FFIXD | toating 8152 double iteger resuh
o FFLYS $hor inege’ 81p2—tiostng resuh
* FFLTD | double intege: arg2—fiosung resuh
1c BINDEC | twnary fosting—decma! BLD siing
2 DECBIN | gecma' BCD string—bmary tiosing

31

3.3 EXTRA OPERATIONS

in order to support Motorola Pascal, two other op are They includ
Opcode | Mnemonic Operation
1E FAB Absolute Value of arg2 — Result
20 FNEG | —arg2 — Result
3.4 ARCHITECTURE

All fioating point operations are of the “two address” or “three address” variety, all the
user need supply are the addresses of both the operand(s) and the result. The package

fooks for operands at the specified | ion(s) and the result to the specified
destination. For example,
arg arg2 Result

<Source> * <Source> ~ <Destination>

The only permanent state information is contained in floating point contro! block (FPCB)
which defines the modes of the package. This control block is much like the control

blocks frequently used to define I/O or operating system operations. The FPCB is
discussed in detall in Section 5.

82

SECTION 4
MODES OF OPERATION

4.1 INTRODUCTION

in addition to supporting a wide range of precisions and operations, the MCB839 Fioating
Point ROM supports all modes required or suggested by the proposed IEEE standard.
These include: rounding modes, infinity closure modes, and exception handling modes.
The various modes are selected by bits in the fioating point control block (FPCB) that
resides in user memory. Thus, a unique set of modes is for user i
The selection bits in the FPCB are defined in Section 5 oi this manual. Detans o|
algorithms used for rounding and exception checking are di in

For most users, the default modes specified in the proposed IEEE standard will be suffi-
cient. The strength of the proposed IEEE standard is that it provides experienced
numerical analysts with the necessary tools (modes) to generate special complex pro-
grams while, at the same time, making it easier for the average engineering user to get
the best results possible by selecting the defaults.

4.2 ROUNDING MODES

For the following examples, assume z is the infinitely precise result of an arithmetic
operation. Further, assume 21 and z2 are the nearest numbers that bracket z and can be

exactly represented in the selected precision. That is: 21<2< 22 (barely). Then the follow-
ing criteria are used to select the delivered result.

Round to Nearest (RN) — The nearer of 21 or 22 is selected. In the case of a tie, either of

21 or 22 with a zero, least significant bit is chosen (round to even). This is the default
mode.

Round Toward Zero (RZ) — The smaller in magnitude of z1 and 22 is selected (truncation).
Round Toward Plus Infinity (RP) — 22 is selected.

Round Toward Minus Infinity (RM) — 21 is selected.

4.2.1 Rounding Precision

Normally a result is rounded to the precision of its ination. H , when the
destination is Extended Format, the user may specify that the vesuh smnlﬂcund be
rounded to the precision of the basic format of his choice, although the exponent range

41

remains extended. This allows programs written for an implementation with only the
smalier basic formats to be moved to a full imp ion and still g the same
results.

4.2.2 No Double Rounding

- The MCB83S Fioating Point ROM is implemented such that no result will undergo more
than one rounding error.

4.3 INFINITY CLOSURE MODES

The way in which Infinity is handied in a fioating point package may limit the number of
applications in which the package can be used. To solve this problem, the proposed IEEE
standard requires two types of infinity closures. A bit in the control byte of the fioating
point control block (FPCB) will select the type of closure that is in effect at any time.

4.3.1 Atfine Closure

In atfine closure: minus infinity < (every tinite number)<plus infinity. Thus infinity takes
part in the real number system in the same manner as any other signed quantity. The sign
of zero also takes on meaning in affine mode such that:

+n/+0=plus infinity> + n/=0=minus infinity where n = floating point number.
In all other operations, +0 and -0 participate identically.

4.3.2 Projective Ciosure

In projective closure: infinity=minus infinity =plus infinity, and all comparisons be-
tween infinity and & real number involving order relations other than equal (=) or not
equal (=) are invalid operations. In projective closure, the real number system can be
thought of as a circle with zero at the top and infinity at the bottom. Thus, infinity + infini-
ty and infinity - Intinity are invalid operations. Projective closure is the default closure.

4.4 EXCEPTION MODES

Existing tioating point implementations vary in the way they handle exceptions, 8o the
proposed IEEE standard carefully prescribes how ptions must be handied and what
constitutes an exception. Seven types of pli will be '] d by the MC6833

Fioating Point ROM; however, only the first tive are required by the proposed IEEE stan-
dard. These include:

1. Invalid Operation $. Inexact Result
2. Underfiow 6. Integer Overfiow on FINT
3. Overflow 7. Comparison of Unordered Values

4. Division by Zero

42

For each exception the caller will have the option of specifying whether: (1) the routine
should trap to a user supplied trap routine on exception or (2) deliver a default specified
by the proposed standard and proceed with execution. in either case, a status bit is set in
the FPCB status byte and remains set until cleared by the caller's program. The selection
of whether to trap or continue is made by setting bits in the enable byte of the FPCB. For
more details on the FPCB, see Section 5. For a detailed description of each exception,
refer to Appendix D.

If & trap is taken, the fioating point package supplies a pointer in the U register that

points to the current stack frame (refer to Appendix D). This stack frame contains the
following diagnostic information:

1. Which Event Caused the Trap (Overfiow, etc.)

2. Its Location in the Caller's Program

3. The Opcode

4.The Input Operands

5. The Default Result in Internal Format
In the event more than one exception occurs, only one trap will be Invoked according to
the foliowing precedence:

1. Invalid Operation

2. Overflow

3. Underflow

4. Division by Zero

$. Unordered

€. Integer Overfiow

7. Inexact Result

The user supplied trap routine (if any) will usually accomplish one of the four items listed
below.
1. Change the result on the internal stack to the desired result. This result can then be
returned to the caller by the tioating point package during its stack cleanup.
2. Correct the result directly in the memory space of the caller. In this case the fioating
point package does not overwrite the result during its stack cleanup.
3. Do nothing to the result and aliow the fioating point package to deliver the default
value to the result.
4. Abort execution.

All user supplied trap routines must return to the fioating point package (using an RTS in-
struction) for cleanup uniess they abort. If the C-bit in the condition code register is set
on return, then the result (possibly corrected by the trap) is returned to the destination;
otherwise, no result is returned to the destination (with the assumption that the user sup-
plied trap handier already returned a value to the destination).

SECTION 5
FLOATING POINT CONTROL BLOCK

§.1 INTRODUCTION

The fioating point control block (FPCB) is a user defined block that contains information
needed to select the operating mode for a particular call to the fioating point (FP)
package. The FPCB must be defined in user RAM. The FPCB is also used to pass status
back to the caller or to invoke the trap routine. The calier of the fioating point package
must pass the address of the FPCB on each call (see Section 6, User interface, for calling
sequence details). The general form of the FPCB is:

Control Byte 0
Enable Byte 1
Status Byte 2
Secondary Status Byte |3
4

Address of Trap Routine;
5

The following paragrpahs discuss the use of the various bytes in the FPCB.

§.2 CONTROL BYTE

The control byte configures the floating point package for the caller's operation and is
written by the user. r

7 6 (] 4 3 2 1 0
l Pirecisién l X lNRMlRounJModeJ AJLI

Bit0 Closure Bit
0= Projective Closure
1= Affine Closure

Bits 1-2 Rounding Mode
00 = Round to Nearest (RN)
01=Round Toward Zero (RZ)
10 = Round Toward Plus infinity (RP)
11 =Round Toward Minus Infinity (RM)

51

(e

Bit3

Bit4

Normalize Bit

1=Normalize denormalized numbers while in internal format before using.
Precludes the creation of unnormalizec numbers.
* 0=Do not normalize denormalized numbers (warning mode).

Undefined, Reserved

Bits 57 Precision Mode

For move and compare operations, bits 57 are “don't cares” since the source and
destination precisions are specified by an extra argument passed to the routine. See Sec-

000 = Single

001 =Double

010 = Extended With No Forced Rounding of Result
011=Extended — Force Round Result to Single
100 = Extended — Force Round Result to Doubie
101 =Undefined, Reserved

110 = Undefined, Reserved

111 = Undefined, Reserved

tion 6, User Interface, for more detaiis of the moves and compare.

Note that if the control byte is set to zero by the user, all defaults in the proposed IEEE

standard will be selected.

5.3 STATUS BYTE

The bits in the status byte are set by the MCE839 if any errors have occurred. Note that
each bit of the status byte is & *‘sticky” bit and must be manually reset (written) by the
user. The fioating point package writes bits into the status byte but never clears existing
bits. This is done so that a long calculation can be completed and the status need only be

checked once at the end.

Bit0
Bit1
Bit 2
Bit3
Bit 4
BitS
Bit6
Bit7

¥ Uer B o - N RN D
| x | wx] iov Junor] bz une[ove] iop]

Invalid Operation (also see Secondary Status)
Overtlow

Underfiow

Division by Zero

Unordered

Integer Overflow

Inexact Result

Undefined, Reserved

52

8.4 TRAP ENABLE BYTE

If any bit of the trap enable byte is set, it bles the fi g point package to trap If that
error occurs. The bit position definitions are the same as for the status byte. Note that if
a trapping compare is executed and the result Is unordered, then the unordered trap will
be taken regardiess of the state of the UNOR bit in the trap enable byte.

7.8 s 43 dpw D
[x Jwx] ov junor] oz [unrfovr] iop]

Bit 0 Invalid Operation
Bit 1 Overfiow

Bit 2 Underfiow

Bit 3 Division by Zero

Bit 4 Unordered

Bit 5 Integer Overfiow

Bit & inexact Result

Bit 7 Undefined, Reserved

6.5 TRAP VECTOR

if a trap occurs, the floating point package will initiate @ jJump indirectly through the trap
address in the FPCB. An index in the A accumulator then indicates the trap type. Trap
types are as follows:

0 =Invalid Operation
1=Overflow

2 =Undertiow

3 =Divide by Zero

4 =Unnormalized

5 =Integer Overfiow
6 =Inexact Result

1f more than one enabled trap occurs, the MC6838 Fioating Point ROM returns the index
of the highest priority enabled error. Index 0, which is an invalid operation, is the highest
priority, whereas, index 6 (inexact result) is the lowest.

6.6 SECONDARY STATUS
The fioating point package writes a status Into this byte whenever a new 10P occurs. As
is the case with the status byte, it is up to the caller to reset the “IOP type™ field.

7 6 5 4 3 2 31—
l x l Ll x J j\valldg)pculion‘ryge J

53

¢

Bits 0-4 represent the invalid operation type field. These four bits are encoded as shown
below.

0=No IOP error

1=Square Root of: a Negative Number, Infinity in Projective Mode, or 8 Not Normal-
ized Number

2=(+Infinity) + (- Infinity) in Affine mode
3="Tried to Convert a NAN to Binary Integer

4 =In Division: 0/0, Infinity/Infinity, or the Divisor is not Normalized and the Dividend is
Not Zero and is Finite

§=0ne of the Input Arguments was a Trapping NAN
6 = Unordered Velues Compared via Predicate Other Than = or #
7=k Out of Range for BINDEC or
p Out of Range or DECBIN
8= Projective Closure Use of +/-Infinity in Add or Subtract
© =0 x Infinity
10 =In Remainder arg2 is Zero, or Not Normalized in arg1 is Infinite
11=Unused, Reserved
12 =Unused, Reserved
13 = Unused, Reserved
14 = Unused, Reserved
15=Tried to MOV & Single Denormalized Number to & Double Destination

16 ="Tried to Return an Unnormalized Number to Single or Double (also called Invalid
Result in the Proposed IEEE Standard).
17-31=Unused, Reserved

SECTION 6
USER INTERFACE

€.1 INTRODUCTION

There are two types of calls to the fioating point package: register calls and stack calls.
For register calls, the user loads the machine register with pointers (addresses) to the
operand(s) and to the result; the call to the fioating point package is then performed. For
stack calls, the operand(s) is pushed onto the stack and the call to the fioating point
package Is performed. The result then replaces the operands on the stack after comple-
tion. The operand(s) must be pushed least significant bytes first; this is consistent with
the other Motorola architectures in that the most significant byte resides in the lowest
address. The two types of calls look like:

General form of a register call: General form of a stack call:
load registers push arguments
LBSR FPREG register call LBSR FPSTAK stackcall
FCB opcode FCB opcode
pull result

€.2 OPERATION OPCODES AND ENTRY POINTS

The suggested mnemonics and the opcode values for the various operations available in
this floating point package are shown below (in opcode order).

Opcode Operation

Mnemonic Value Description
FADD 00 Add
FsuB 02 Subtract
FMUL 04 Multiply 2
FDIV 06 Divide
FREM 08 Remainder
FSQRT 12 Square Root
FINT 14 integer Part
FFIXS 16 Float — Short Integer
FFIXD 18 Float — Double Integer
BINDEC 1c Binary Fioat = BCD String
FAB 1E Absolute Value
FNEG 20 Negate
DECBIN 22 BCD String — Binary Float
FFLTS 24 Short Integer — Float
FFLTD 26 Doubie Integer — Float
FCMP BA Compare
FPCMP BE Predicate Compare
FMOV 8A Move (or Convert) arg1 — Result
FTICMP cC Trapping Compare
FTPCMP DO Trapping Predicate Compare

61

The two entry points to the MC6839 are referred to as FPREG (register call) and FPSTAK
(stack call). Their addresses are:

FPREG = ROM starting address + $3D

FPSTAK = ROM starting address + $3F
The first $3C locations of the ROM contain a fixed size ROM header. The entry points for
the fioating package are located in a branch table immediately following this header.

Therefore, the addresses of the entry points will remain constant for future versions of
the ROM.

6.3 STACK REQUIREMENTS

When the MCE838 Floating Point ROM is called by the user, local storage is reserved on
the hardware stack by the fioating point package. The input arguments are then moved
from user memory to the local storage area, and are expanded into a convenient internal
format. The operations use these “internal” numbers to arrive at an “internal” result. The
“internal” result is then converted to the memory format of the result and returned (as
the result) to the user. For this reason, the user must insure that adeguate memory exists
on the hardware stack before calling the MC6839 Floating Point ROM. The maximum
stack sizes that any particular operation will ever require are:

register calls 170 bytes

stack calls 200

bytes

€.4 CALLING SEQUENCE

€6.4.1 Register Call

In this calling method the addresses of the arguments and the fioating point control
block (FPCB) are passed in the register:

U =address of argument 1

Y = address or argument 2

X = address of result

D=address of FPCB

if an argument is not used in a particular operation, it need not be included. In monadic
operations, Y contains the address of the singlie argument. The result may be the same
address as either of the arguments. All registers will be restored on exit.

62

Example of a position independent call to the add routine:
LEAU arg1, PCR
LEAY arg2, PCR
LEAX FPCBPTR,PCR pointer to FPCB*

TFR X, D

LEAX result, PCR
LBSR tpreg

FCB FADD

Example of & position independent monadic call to the square root routine:

LEAY arg2, PCR

LEAX FPCBPTR, PCR

TFR X, D

LEAX result, PCR

LBSR FPREG

FCB FSQRT s

For some operations the arguments have slightly different meanings. See Appendix A for
details. All subroutines in the fioating point package are re-entrant and position indepen-
dent. However, the caller must use caution to insure that his call does not violate the
rules of re-entrancy or position independence. For example, each catling task should
have its own FPCB to remain re-entrant. Also, if in the previous examples load im-
mediates had been used, rather than load effective address program counter relative, the
calling program could not have been position independent.

6.4.2 Stack Call

In this mode the actual argument(s), not their addresses, and the address of the FPCB
are assumed to be on the top of the hardware stack and they will be removed and replac-
ed by the result on exit. If two arguments are on the stack, then argument 2 should be

above (lower address) argument 1. The address of the FPCB is on the top of the stack
above the argument(s).

Example of a stack call to the add routine:

push argument 1

push argument 2

push FPCBPTR Pointer to FPCB
LBSR FPSTAK

FCB FADD

pull result

For monadic operations, arg2 contains the single input argument and there is no arg1.
On return, the FPCB pointer and any other parameters are lost from the top of the stack.
The only object left on the stack after an operation is the result. For some operations, the
arguments have slightly different meaning. See Appendix A for details.

“Two Instructions are required hers If the caller wishes his call to remain position independent thers is no LEAD in-
struction).

APPENDIX A
OPERATION DESCRIPTIONS

A1 INTRODUCTION

This appendix contains detalled information covering specific operations and their re-
quired calling sequences. The operations are arranged in alphabetical order with a sum-

mary listing on the last page of this appendix. Detailed descriptions of the algorithms are
provided in Appendix B.

A2 NOTATION

in describing each specific operation, symbols are used to indicate the operation. Table
A-1 lists these symbols and their meaning. Abbreviations which are used for the source
form, various registers, bits, bytes, etc. are listed in Table A-2.

Table A-1. Specific Operation Notation

Symbor Meaning

Is Trans'e'red As (Stored As'
Boolean Exciusve OR

| | Arthmens Pius

Arthmelc Minus
Arthmenc Muhply

x|1|+|oft

A1

Table A-2. Abbreviations

Abbrevistion [
L] s Argument

BCS Branch f Carry Set

BGE Branch # Greater Than or Eaue! 10 Zero 0
*BINDEC Bimary Fioating Pomt 1o Decima! Stning

*DECBIN Decma! Siing 10 Binary Flosting Pont

*FAB Absolne Value of an Argument :

*FADD Agd

FCB Form Constant Byte lassembier directive!

*FCMP Compare Compares two 8rguments angd sets Condilion codes
*FDIV Dwige Dewvioes one argument by snother

*FFIXD

Fix Doubk converts an srgumenn #1om 3 fiosting pom! number mio 8 32:b1 binary mteger

“FFIXS Fix Smyle convens an argument from 8 fioaing Domt mumbe: mio 8 ¥6-bi binary miege:
*FFLTD Fioa: Double converts 8 2-tat bwmary miege: mio 8 M21ng Pom: resull 5
CFFLTS Fiom Swgie converts 3 ¥6-dn binary intege’ mio 8 Hozng pomt resun

SEINT Inege: Part Fiosaung point #rgument 1s converied 1o as fio2nng pomt mieger pant

*EMOV Move Moves an argument 10 The result (with any imphed conversions'

*EMUL Muhply Muhiphes two arguments ang siores the resuh

*ENEG Negate Crange the sign of an srgument

FPCB Floaimg Poimt Contro! Biock

SFPCMP Preg.cate Compare Compares wo arguments anc atiems or Orsathrms a predicate

FPREG Regmwe Ca Emry Poimt

FPSTAK Swck Ca Entry Pont

*FSORT Square Root Stores the square oot of ar. argument X
*FSUB Sutiran

Matstid Trappng Compare Compares two 8rguments ant sews condmon codes Traps on unordees
FTPCMP

Trappng Presicate Compare Compares two arguments and atirms o gisafirms predicate Traps o~ unordered
LBSR Bra~ch 10 Subroutne

“These abbrevianions represent the Specific DPerations which are described m this appendix See Appendix H for more Definiams

Ilncmor;lc:
Operation:
Description:
Opcode:
Precisions:
Register

Calling
Sequence:

Stack
Calling
Sequence:

ABSOLUTE VALUE

FAB
|arg2|—result
Return absolute value of arg2 as the result.

$1E

All. The result will have the same precision as arg2. The precision is
specified in bits 5-7 of the FPCB control byte.

foad X with address of result

load Y with address of arg2

load D with address of FPCB

LBSR FPREG (FPREG = ROM start + $3D)
FCB FAB

The result is automatically returned to user memory. This calling sequence
is the same for all monadic calls.

push arg2

push address of FPCB

LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FAB

pull result

Only the result is left on the stack after return from the subroutine. This
calling sequence is the same for all monadic calls.

A3

Mnomo;'nlc:
Operation:
Description:
Opcode:

Precisions:

Register
Calling
Sequence:

Stack
Calling
Sequence:

ADD

FADD
argl +arg2—result
Add arg? to arg1 and store the result.

$00

All. Both arg1 and arg2 must be of the same precision. The result will also

be the same precision. The precision is specified in bits 5-7 of the FPCB
control byte.

foad X with the address of the result
load Y with the address of arg2

foad U with the address of arg1

foad D with the address of the FPCB
LBSR FPREG (FPREG = ROM start 4+ $3D)
FCB FADD

The result is automatically returned to user memory. This calling sequence
is the same for all dyadic calls.

push arg1

push arg2

push address of FPCB

LBSR FPSTAK (FPSTAK = ROM start + $3F) B
FCB FADD

pull result

Only the result is left on the stack after the call. This calling sequence is
the same for all dyadic calls.

A4

Mnemonic:
Operation:

Description:

Opcode:

Precisions:

BINARY FLOATING TO
DECIMAL STRING

BINDEC
arg2—-BCD string with k significant digits

Convert a fioating point argument in arg2 to an unpacked BCD string in the
result. A parameter k is also passed to the routine to indicate the number of

significant digits desired in the result (1= k<8 for single; 1sk< 17 for dou-
bie).

$1C

Single and double results are delivered to the accuracy required by the pro-
posed IEEE standard. Extended results, however, are not necessarily more
accurate than double and may take considerably more time to compute.
The precision of arg2 is specified in bits 5-7 of the FPCB contro! byte. The
output BCD string is a standard 26 byte BCD string of the form:

01 56 2825°
Ee 4 Digit BCD Exponem] sf]1QDigM B8CD Fractionl ;l

se =sign of the exponent. 00 = plus, $OF =minus.
st =sign of the fraction. 00 = plus, $OF = minus.

P =number of fraction digits to the right of the decimal point (one byte).
All BCD digits are unpacked and right justified in each byte:
7 0
| o000 | o8 |

Since some special floating point values have no obvious BCD equivalent,
the sign of the exponent (se) is used to indicate these special cases:

se =00 =regular positive number.
= 0F =regular negative number.
=0C=NAN. The four digit BCD the unpacked hex
address that was in the NAN.
=0B =minus infinity. All remaining bytes of the BCD string are zero.
=0A = plus Infinity. All remaining bytes of the BCD string are zero.

Even though these specia! bers can be d as output, they are not
fegal inputs to DECBIN.

A5

Register
Calling
Sequence:

Stack
Calling
Sequence:

load X with address of result

load Y with address of arg2

foad U with k

foad D with address of FPCB

LBSR FPREQ (FPREG = ROM start +$3D)
FCB BINDEC

The resultant BCD string is automatically returned ts the user.

push arg2

push k

push address of FPCB

LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB BINDEC

pull BCD string

A8

Mnemonic:

Operation:

COMPARE

FCMP, FTCMP, FPCMP, FTPCMP

arg1-arg2 (return condition code

9 or ffima p

Description: Compare arg1 with arg2. Both arg1 and arg2 may be of different precisions.

Two basic types of compares are provided. One returns condition codes in
the condition code register to the user to indicate the result of the com-
parison. The other is given a predicate (e.g., Is arg1 equal to arg2?) and
either affirms or disaffirms the predicate.

1) Condition code compares:
FCMP

Compare argl with arg2 and set the condition codes. Do not trap on
unordered unless the trap on unordered bit (UNOR) is set in the trap enable
byte of the FPCB.

FTCMP

Compare arg1 with arg2 and set the condition codes. Trap If the unordered

conditions occur regardiess of the state of the UNOR bit In the trap enable
byte of the FPCB.

The intermediate result of any comparison can yleld one of five possible
results: arg1 is>arg?2, argl is<arg?, argl =arg2, argi=arg2, or argl can-
not be compared to arg2 (unordered). The unordered condition occurs when
a comparison Is made between a NAN and nnylhing eise or when Inllnlty Is
compared to anything except itself in proj; This &

result Is then used to set the condition codes as follows:

Result NZVEC

> 0000
< 1000
= ‘0100

unordered ©0 © 0 1

The remaining condition code register bits (E, F, H, and [) are unatfected by
compare.

This allows the following signed branches to be taken i diately follow-
ing the return from FCMP or FTCMP.

Condition Branch Test for Branch

> (LUBGT [not(NeV)and (notZ)=1
= (LBGE not(NeV)=1

< (LBLT not(NeV)=0 <
= (UBLE not(NeV)and (not 2)=0
= (LUBEQ 2Z=1

L (LBNE 2Z=0

unordo_ud LBCcs C=1

. AT

if FCMP and the unordered trap Is disabled, a BCS should immediately
follow the call and precede any of the other branches:

LBSR fpxxx
FCB FCMP
BCs unordered
BGE fabel

Aot

Note that this implementation 6f pare cond! (as d by the
proposed |EEE standard) does not support the dichotomy principle normal-
ly associated with integer compare. For ple, BGE is not ily
the inverse of BLT (the result may be unordered too). Compiler writers must
take care not to switch the condition of a branch during code generation.

2) Predicate Compares

FPCMP

Compare arg1 with arg2. Either affirm or disaffirm an input predicate. Do
not trap on unordered unless the UNOR bit is set in the trap enabie byte of
the FPCB. For register calls the Z-bit in the condition code register is set to
1 for affirm (true) and set to O for disaffirm (false). For stack calls 2 byte of

zeros is pushed on top of the stack for true and a byte of ones ($FF)is push-
ed for false.

FTPCMP

Compare arg1 with arg2. Either affirm or disaffirm an input predicate. Trap
if the unordered condition occurs regardiess of the state of the UNOR bit in
the trap enable byte of the FPCB. For register calls the Z-bit in the condition
code register is set to 1 for affirm (true) and set to 0 for disaffirm (false). For

stack calls a byte of zeros is pushed on top of the stack for true and a byte
of ones ($FF) is pushed for false.

Unordered conditions occur when & comparison is made between a NAN

and anything else or when infinity is compared to anything exoept itself in
projective closure.

The predicate to be affirmed or disaffirmed is passed to the compaié inthe
parameter word:

Predicates 8 7 6 4 3 2

e =l Telww o] wr]

A8

The predicates are >, x, <, and dered, or a bl binati
of these (e.g., > =). The Imermedme nsuh of a predicate compare Is
elther >, =, <, or unordered. The table below gives the predicate atfirmed
or dlsamrmed |or each possible intermediate result.

intermediate Result Predicates Affirmed
fess than <=,
equal =s2
greater than >2.
unordered unordered
intermediate Result Predicates Disatfirmed
fess than = 2 > unordered
equal < > unordered #
greater than = = < unordered
unordered <s=2><>

The result returned for affirmed is a zero byte and for disaffirmed it is & — 1 or SFF byte
for a stack call. For a register call, Z= 1 if the predicate is affirmed.

Opcodes:

Precisions:

FCMP=8$8A
FTCMP=8CC
FPCMP =$BE
FTPCMP=8D0

Since the compares allow arg1 and arg2 to be of different precisions, a
parameter word mus! be passed on each call to any compare. The format of
the parameter word Is:

11 Predicates 76 4 3 2

T = I v el o e[v

Where arg1 or arg2 is defined:

000 Single

001 Double

010 Extended

011 Unused (detaults to extended)
100 Unused (defaults to extended)

101111 Undefined

Since the parameter word specifies both arguments of the compare, bits
5-7 of the control byte of the FPCB do not atfect the compare instructions.

A8

Register
Caliing

Sequence:

Stack
Calling

Sequence:

foad X with the parameter word 5
load Y with address of arg2

load U with address of arg1

foad D with address of FPCB

LBSR FPREG (FPREG = ROM start + $3D)

FCB <Opcode>

The result is returned in the condition code register. It is either a setting of
the condition code register (condition code call) or the Z bit is set to 1 for af-
firm and Z =0 for disaffirm (predicate calls).

push arg1

push arg2

push parameter word

push address of the FPCB

LBSR FPREG (FPREG = ROM start + $3F)
FCB <Opcode>

pull result

If the compare is & condition code compare, no result is delivered on the
stack — only the condition codes are returned in the condition code
register. If the compare is & predicate compare, & 1-byte result is returned
on top of the stack. The result = 0 for affirmed and - 1 ($FF) for disaffirmed.

A-10

Source
Form:

Operation:

Description:

Opcode:

Precisions:

Register
Calling
Sequence:

Stack
Calling
Sequence:

DECIMAL STRING TO BINARY FLOATING POINT

DECBIN
BCD string—floating point result

Converi a standard BCD string into a binary tioating point result. The value
“p" in the standard decimal string indicates the number of digits of the
fraction that are to the right of the decimal point.

$22 3
The precision of the result is defined by bits 5-7 of the FPCB control byte.
The input BCD string is a standard 26 byte BCD string of the form:

01 56 2425
lse 14 Digit BCD ExponemJ sf]wbigix BCD Fuctionl] I

se = sign of the exponent. 00 = plus, $OF =minus (one byte).
sf=sign of the fraction. 00 = plus, $0F = minus (one byte).
p=number of fraction digits to the right of the decimal point (one byte).

All BCD digits are unpacked and right justified in each byte:
7 0

{ ooo0 | 09 |

The byte ordering of the fraction and exponent is consistent with all
Motorola processors in that the most significant BCD digit is in the lowest
memory address.

load X with the address of result

foad U with the address of the BCD input string
foad D with the address of the FPCB

LBSR FPREG (FPREG = ROM start + $3D)

FCB DECBIN

The result is automatically returned to the user.

push the BCD string

push address of the FPCB

LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB DECBIN

pull fioating point result

A1

=

Mnemonic:
Operation:
Description:
Opcode:

Precisions:

Register
Calling
Sequence:

Stack
Calling
Sequence:

DIVIDE

FDIV

argi/arg2—result

Divide arg1 by arg2 and store the result.
$08

Both arg1 and arg2 must be of the same precision. The result will also be

the same precision. The precision is specified in bits 5-7 of the FPCB con-
trol byte.

load X with the address of the result
load Y with the address of arg2

foad U with the address of arg1

load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start +$3D)
FCB FDIV

The result is automatically returned to user memory. The calling sequence
is the same for all dyadic calls.

push arg1
push arg2
push address of FPCB

LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FDIV
pull result

Only the result is left on the stack after the call. This calling sequence is
the same for all dyadic calls.

A12

Mnemonlc:
Operation:
Description:

Opcode:

Precisions:

Register
Calling
Sequence:

Stack
Celling
Sequence:

FIX

FFIXS, FFIXD
arg2—-binary integer result

Converts arg2 from a floating point number into a8 16- or 32-bit binary in-
teger. If arg2 is infinity, then the integer returned is the largest or smallest
twos complement integer.

FFIXS = $16 (16-bit integer)
FFIXD = $18 (32-bit integer)

Same as absolute value except that the result will be a 16- or 32-bit integer
as specified by the opcode.

load X with the address of the result
load Y with the address of arg2

load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FFIXS or FFIXD

The result is automatically returned to user memory. The calling'sequence
is the same for ali monadic calls.

push arg2

push address of FPCB

LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FFIXS or FFIXD

pull result

Only the result is left on the stack after return from the subroutine. This
calling sequence is the same for all monadic calls.

A13

FLOAT

Mnemonic: FFLTS, FFLTD
Operation: Binary integery arg2—fioating point result
Description: Converts a 16- or 32-bit integer into a floating point result.

Opcode: FFLTS =$24 (16-bit binary integer)
FFLTD =$26 (32-bit binary integer)

Precisions: All. The size of the binary integer is specified in the opcode. The precision
is specified in bits 5-7 of the FPCB control byte.

Register

Calling

Sequence: load X with the address of the result
load Y with the address of arg2
load D with the address of the FPCB
LBSR FPREG (FPRET = ROM start + $3D)
FCB FFLTS or FFLTD

The result is automatically returned to user memory. The calling sequence
is the same for all monadic calls.

Stack
Calling
Sequence: push arg2
push address of FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FFLTS or FFLTD
pull result 3
Only the result is left on the stack after return from the subroutine. This
calling sequence is the same for all monadic calls.

A4

Mnomol-ulc:
Operation:
Description:

Opcode:

Precisions:

Register
Calling
Sequence:

Stack
Calling
Sequence:

INTEGER PART

FINT
Integer part (arg2)—floating point result

The floating point argument in arg2 is converted to its floating point integer
part. This differs from FIX which returns a binary integer. Integer part
returns a floating point number. For example, the integer part of 3.14159 is
3.00000 if the rounding mode is round to nearest.

$14

All. The result will have the same precision as arg2. The precision is
specified in bits 5-7 of the FPCB control byte.

load X with the address of the result
load Y with the address of arg2

load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FINT

The result is automatically returned to user memory. The calling Sequence
is the same for all monadic calls.

push arg2

push address of FPCB B
LBSR FPSTAK (FPSTAK = ROM start + $3F)

FCB FINT

pull result

Only the result is left on the stack after return from the subroutine. This
calling sequence is the same for all monadic calls.

‘A5

MOVE

Mnemonic: FMOV
Operation: arg2—result

Description: For register calls, the move instruction moves arg2 to the result. Since
- moves allow mixed precisions, they can be used to convert a number from
one precision to another during the move. For stack calls, the move is

essentially a “convert precision of stack top" operation.

Opcode: $9A
Precisions: The move allows arg2 and the result to be of different precisions. In order to

specify the two precisions, a parameter word must be passed on each call
to move. The form of the parameter word is:

0

8 6 4 2
L 00000000] 01 arg2 I D] result J

Where arg2 (source) or result (destination) is defined:

000 Single

001 Double

010 Extended

011 Extended round to single
100 Extended round to double

101111 lllegal

Since the parameter word specifies both arguments of the move, bits 5-7 of
the FPCB control byte do not affect the move operation.

Register
Calling
Sequence: load X with the address of the result
load Y with the address or arg2
load U with the address of precision parameter word
load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FMOV 5

The result is automatically returned to user memory in the precision
specified in the parameter word.

A-16

Stack
Calling
Sequence:

push arg2

push precision parameter word

push address of FPCB

LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FMOV

pull result

Only the result Is left on the stack after the operation. The result has the
precision (and size) specified in the precision parameter word.

A17

Mnemonic:
Operation:
Description:
Opcode:

Precisions:

Register
Calling
Sequence:

Stack
Calling
Sequence:

MULTIPLY

FMUL
arg1xarg2—result

Multiply arg1 and arg2 and store the result.
$04

arg1 and arg2 must be of the same precision. The result will also be the
same precision. The precision is specified in bits 5-7 of the FPCB control
byte.

load X with the address of the result
load Y with the address of arg2

load U with the address or arg1

load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FMUL

The result is automatically returned to user memory. The calling sequence
Is the same for all dyadic calls.

push arg1

push arg2

push address of FPCB

LBSR FPSTAK (FPSTAK = ROM start + $3F) -
FCB FMUL

pull result

Only the result is left on the stack after the call. This calling sequence is
the same for all dyadic calls.

A1B

o

Mnemonic:
Operation:
Description:
Opcode:
Precisions:
Register

Calling
Sequence:

Stack
Calling
Sequence:

NEGATE

FNEG
arg2—-result

Negate arg2 by changing the sign and store as the result.
$20

All. The result will also be the same precision as arg2. The precision is
specified in bits 5-7 of the FPCB control byte.

foad X with the address of the result
load Y with the address of arg2

load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FNEG

The result is automatically returned to user memory. The calling sequence
Is the same for all monadic calls.

push arg2

push address of FPCB

LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FNEG

pull result

Only the result is left on the stack after the call. This calling seqoence is
the same for all monadic calls.

A-19

Mnemonic:

Operation:

Description:

Opcode:

Precisions:

Register
Calling
Sequence:

Stack
Calling
Sequence

REMAINDER

-

FREM

arg1—(arg2 x n)—result [where n=integer part of (argi/arg?) in round
nearest]

Finds the remainder of arg1/arg2 and stores it as the result. Note, as defin-
ed by the proposed IEEE standard, this is not the same as “modulo.” For
example, the remainder of 8/3 is — 1 not 2. This can be seen by substituting
8 and 3 in the equation in the operation description:

n—integer part of 8/3=3 (round nearest)

remainder=8-(3x3)= -1
This form of remainder was chosen for a number of reasons. First, it is the
remainder most useful for scaling the inputs to trigonometric subroutines.
Secondly, all other remainder type functions may be easily derived from
this one. For example, the “modulo” function is found by taking:

Z =remainder (arg2/arg1);

i1 Z<0thenZ=2Z +argt.

$08

arp1 and arg2 must be of the same precision. The result will also be the
same precision. The precision is specified in bits 5-7 of the FPCB control
byte.

load X with the address of the result

load Y with the address of arg2

load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FREM 3

The result is automatically returned to user memory. The calling sequence
Is the same for all dyadic calls.

push arg2

push address of FPCB

LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FREM

pull result

Only the result is left on the stack after the call. This calling sequence is
the same for all dyadic calls.

Mnomo;\lc:
Operation:
Description:
Opcode:

Precisions:

Register
Calling
Sequence:

Stack
Calling
Sequence:

SUBTRACT

FSUB

arg1 - arg2—result

Subtract arg2 from arg1 and store the result.
SOF

All. Both arg1 and arg2 must be of the same precision. The result will also
be the same precision. The precision is specified in bits 5-7 of the FPCB
control byte.

load X with the address of the result
load Y with the address of arg2

load U with the address of arg1

load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FSUB

The result is automatically returned to user memory. The calling sequence
is the same for all dyadic calls. :

push arg1

push arg2

push address of FPCB

LBSR FPSTAK (FPSTAK = ROM start + $3F) -
FCB FsuB

pull result

Only the result is left on the stack after the call. This calling sequence is
the same for all dyadic calls.

A-21

SQUARE ROOT

Mnemonic: FSQRT

Operation: Square root of arg2—result

Description: Returns the square root of arg2 as the result.
Opcode: $12

Precisions: All. The result will also be the same precision as arg2. The precision is
A specified in bits 5-7 of the FPCB control byte.

Register

Celling

Sequence: load X with the address of the result
load Y with the address of arg2
load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FSQRT

The result is automatically returned to user memory. The calling sequence
Is the same for all monadic calls.

Stack
Calling
Sequence: push arg1
push address of FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FSQRT ;
pull result

Only the result is left on the stack after return from the subroutine. This
calling sequence is the same for all monadic calls.

A-22

Table A-3. MC6839 Calling Seq and Opcode S y Table
Function Opcode Register Calling Sequence Stack Caliing Sequence’
FADD $00 U= Addr. of Argument #1 Push Argumen #1
FsuB $02 Y= Addr of Argumen: §2 Push Argumen: #2
FMUL 804 D—Add of FPCB Push Ador of FPCB
FDIV $06 Xx=—Adgr of Resutt LBSR FPSTAK
LBSR FPREQ FCB <opcode>
FCB <opcode> Puh Resun
FREM 308 Y—Ador of Argument Push Argument
FSORT $12 D= Agdr of FPCE Push Agor of FPCB
FINT s X=— Aoy of Resun LBSR FPSTAK
FFIXS 816 LBSR FPREG FCE <opcooe>
FFIXD $18 FCB <opcooe> Put Resutt
FAB S1E
FNEG 820
FFLTS $2: *
FFLTD $2¢ o
FCMP 82 U=Agd: of Argument #1 Push Argument #1
FICMP sCC Y—Addr of Argument #2 Push Argument 2
FPCMP SBE D— Ado: of FPCB Pus Parameter Word
FTPCMP DO X = Parameter Woro Push Ads of FPCE
LBSR FPREG LBSR FPSTAK
FCB < opcode> FCB <opcode>
Pu Resu®: (f predicae compare!
INDTE Resu returnes m tne CC register For NOTE Resuh retunes m e CC regrste” fc-
predicate compares tne Z-Bi1 1s set if preocare | regular compares For predicate comperes & 0n€
's atfirmed clea.ed «f disat(rmed byte resu’t 1 relurned on 1he 10 of the
The resutt & 7er0 atirmeo ang - USFF
osat-mes |
FMOV $9% L—Precs or Paramere: Koo Pus Argament
Y= Adz: of Argument Pus~ Precsion Parameter Worg
D— Agg: of FPCB Pus- Aoor of FPCB
X= Aodr of Resut LBSR FPSTAK
LBSR FPREG FCB FMOV
. FCB FMOV Put Resuh
BINDEC $1C U=k (# of 0igis m resutt! Push. Argument
Y= Agdr of Argument Push &
D—Addr of FPCB Push Addr of FPCB
X = Ador of Decima! Result LBSR FPSTAK
LBSR FPREG FCB BINDEC
FCB BINDEC Put BCD Swing
DECBIN $22 U= Agdr of BLD input Sting Push Agg' of BLD Input Strng
D= Add' of FPCE Push Ador of FPCB
X Addr of Binary Result LBSR FPSTAK
LBSR FPREG ¥CB DECB'N
FCB DECBIN Pull Bnary Resuht
A o

lowes: aooress

Entry points 10 the MCE83S are defined s foliows

FPREG = ROM start+ $3D
FPSTAK = ROM s1art+ $3F

A-23/A-24

Uments are Pushed On The Slack least-significant byles 1St SO That The high-orde’ byle Biways DusheC last and resioes i tne

APPENDIX B
APPLICATION EXAMPLE
OF THE QUADRATIC EQUATION

This app i ple using the MC6839 Fioating Point ROM.
The program shown below Is onc that finds the roots to quadratic equations using the

classic formula:
-bz .55 - 4ac
2a

Note that the program uses a standard set of macro instructions to set up the

in the calling the i way 1o 9
MC6839 Floating Point ROM is through the use ol these macro instructions. Errors are
reduced because, once the macro instructions are shown to be correct, their internal
details can be ignored allowing the prog: to only on the problem at
hand.

(NAM QUAD

HERE IS A SIMPLE EXAMPLE INVOLVING THE QUADRATIC EQUATION THAT
SHOULD SERVE TU ILLUSTRATE THE USE OF THE MC653Y IN AN ACTUAL
APPLICATION.

LB B B B AN

LINKING LOADER DEFINITIONS

XDEF QUAD

XREF FPREG

=
* RMBS FOR THE OPERANDS, BINARY TO DECIMAL CONVERSION BUFFERS,
* AND THE FPCB.

ACOEFF RYB 26 COEFFICIENT A IN AX"2 4 BX + C

BCOEFF RMB 26 COEFFICIENT B

CCOEFF RMB 26 COEFFICIENT C

-

REG] RMB 4 REGISTER 1

REG2 RMB 4 REGISTER 2

REG3 R¥3 4 REGISTER 3

-

FPCB RB 4 FLOATING POINT CONTROL BLOCK

-
- WO FCB $40,00,00,00 FLOATING PT. CONSTANT TWO
(FOUR FCB $40,$80,00,00 FOUR

= HERE ARE THE EQUATES AND MACRO DEFINITIONS TO ACCOMPANY THE
* QUADRATIC EQUATION EXAYPLE OF AN MCoB3Y APPLICATION.
-

ADD EQU 00 OPCODE VALUES
sUB EQU 02

MUL EQU 04

LIV EQU 06

SORT EQW $12

ABS EQU SI1E

NEG EQU S20

BNDC EQU SIC

DCBN EQU $22

-

*® MACRO DEFINITIONS
-

* HERE ARE THE CALLING SEQUENCE MACRUS

MCALL SETS UP A MONADIC REGISTER CALL.

{

USAGE: MCALL <INPUT OPERAND>, COPERATIONY,<RESULT>

B2

LEAY \U,PCR POINTER TO THE INPUT ARGUMENT

LEAX FPCB,PCR POINTER TO THE FLOATING POINT CONTROL BLOCK
TFR X,D
LEAX \2,PCR POINTER TO THE RESULT
LBSR FPREG CALL TO THE MC6B39
FCB \1 OPCODE
-
BENDM
-
-
DCALL MACR

DCALL SETS UP A DYADIC REGISTER CALL

L A

USAGE: DCALL <ARGUMENT §1>,<OPERATIOND, CARGUMENT #2>,<RESULT>

LEAU \O,PCR POINTER TO ARGUMENT §1
LEAY \2,PCR POINTER TO ARGUMENT $#2
LEAX FPCB,PCR POINTER TO THE FLOATING POINT CONTROL BLOCK
TFR X,D
LEAX \3,PCR POINTER TO THE RESULT
LBSR FPREG CALL TO THE MC6839
FCB \1 OPCODE

.
ENDM

-

-

DECBIN MACR

-

* DECBIN SETS UP A REGISTER CALL TO THE DECIMAL TO BINARY CONVERSION FUNCTION.
-

*® USAGE: DECBIN <BCD STRING>,<BINARY RESULT>

-

LEAU \0,PCR POINTER TO THE BCD INPUT STRING
LEAX FPCB,PCR POINTER TO THE FLOATING POINT CONTROL BLOCK
TFR X,D
LEAX \1,PCR POINTER TO THE RESULT
LBSR FPREG CALL TO THE MC6839
FCB DCBN OPCODE
-
BDM
-
-
BINDEC MACR
-

* BINDEC SETS UP A REGISTER CALL TO THE BINARY TO DECIMAL CONVERSION FUNCTION.
-

* USAGE: BINDEC <BINARY INPUT>,<BCD RESULT>,<# OF SIGNIFICANT DIGITS RESULT>
-

m \2 # OF SIGNIFICANT DIGITS IN THE RESULT

LEAY \0,PCR POINTER TO THE BINARY INPUT

LEAX FPCB,PCR POINTER TO THE FLOATING POINT CONTROL BLOCK

TFR X,D

LEAX \1,PCR POINTER TO THE BCD RESULT i
-2-

7

LBSR FPREG

QUAD EQU *
-
LDS {#S6FFF
-
LEAX FPCB,PCR
LDB 44
WHILE B,CT,#0
DECB

CLR B,X

ENDWH

SINGLE BINARY FORM.

* %9

DECBIN ACOEFF,ACOEFF
DECBIN BCOEFF,BCOEFF
DECBIN CCOEFF,CCOEFF

DCALL BCOEFF,MUL,BCOEFF,REG]
DCALL ACOEFF,MUL, CCOEFF ,REG2
DCALL REG2,MUL,FOUR,REG2
DCALL REG1,SUB,REG2,REG1

LDA REG1,PCR

IFCC GE

MCALL REG1,SQRT,REG1
DCALL ACOEFF,MUL,TWO,REG2
MCALL BCOEFF,NEG,BCOEFF

DCALL BCOEFF ,ADD,REG1,REG3
DCALL REG3,DIV,REG2,REG3
BINDEC REG3,ACOEFF,#5

DCALL BCOEFF,SUB,REG],REG3
DCALL REG3,DIV,REG2,REG3
BINDEC REG3,BCOEFF,#5

LDA {SFF
STA CCOEFF,PCR

ELSE
MCALL REG],ABS,REG1
MCALL REG1,SQRT,REG1

CALL TO
OPCODE

THE MC6839

INITIALIZE THE STACK POINTER

INITIALIZE STACK FRAYE TO
SINGLE, ROUND NEARCST.

CONVERT THE INPUT OPERANDS FROW BCD STRINGS TO THE INTERNAL

NOW START THE ACTUAL CALCULATIONS FOR THE QUADRATIC EQUATION

CALCULATE B~2
CALCULATE AC
CALCULATE 4AC
CALCULATE B"2 - 4AC

* CHECK RESULT OF B™2 = 4AC TO SEE IF ROOTS ARE REAL OR IMAGINARY

SIGN IS POSITIVE; ROOTS REAL
CALCULATE SQRT(B"2 = 4AC) ~
CALCULATE 2A 2
NEGATE B

CALCULATE =B 4 SORT(B™2 = 4AC)
CALCULATE (-B + SQRT(B"2 = 4AC))/2A
CONVERT RESULT TO DECIMAL

CALCULATE -B - SORT(B"2 - 4AC)
CALCULATE (-B + SORT(B™2 = 4AC))/2A
CONVERT RESULT TO DECIMAL

SENTINAL SIGNALING THAT ROOTS ARE REAL
SIGN IS NEGATIVE; ROOTS IMAGINARY

MAKE SIGN POSITIVE
CALCULATE SQRT(B™2 = 4AC)

-3

B4

.

DCALL ACOEFF,MUL,TWO,REG2
DCALL REG1,DIV,REG2,REG1
DCALL
MCALL

BCOEFF,DIV,REG2,REG2
REG2,NEG,REG2

BINDEC REG1,BCOEFF,#5
BINDEC REG2,ACOEFF,#5

CLR CCOEFF,PCR
ENDIF

NOP
NOP

CALCULATE 2A
CALCULATE (SQRT(B™2 = 4AC))/2A

CALCULATE =B/2A
CONVERT =B/2A TO DECIMAL
CONVERT (SQRT(B2 = 4AC))/2A

SENTINAL SIGNALING IMAGINARY ROOTS

APPENDIX C
DETAILED DESCRIPTION OF OPERATIONS

C.1 INTRODUCTION

This appendix contains detailed algorithmic information for each operation. Some im-
plementation is also given to help explain how the MC6839 Floating Point ROM operates.

C.1.1 Argument Type Matrix

in order to speed up execution of the operations, tables are used to define special ac-
tions required for most operations. That is, most operations require special handling of
values such as +0, -0, infinities, etc. For monadic operations, the type of arg2 is used
to index into a one dimensional table. The index is determined by the type of argument.

Index
Normalized 0
Zero 2
arg2 Infinity 4
NAN 6
Not Normalized B

For dyadic operations, the type of both arguments determine the index.

arg2
Normalized | Zero | Infinity | NAN | Not Normalized
Normalized 00 02 04 06 08
Zero 10 12 14 16 18
argl Infinity 20 22 24 26 28
NAN 30 32 34 36 38
Not Normalized 40 42 44 46 48

The index is used by each operation to jump indirectly through a table of values that
specifies the offset from the start of the ROM to the routine to be executed.

C.1.2 Reading The Matrix Table
Argument type matrix tables are used in the discussion of each operation which follows.

An entry in the table that contains “arg1"” or “‘arg2” means that the operation will return
that argument as the result and that no other processing is necessary. A letter in the

C1

matrix indicates that the operations specified in the paragraph with that letter will be ex-
ecuted to calculate the result. An example table and explanation is given below:

Z

Normalized a
Zero arg2

arg2 Infinity c
NAN arg2

Not Normalized b

In this example, if the input argument (arg2) is normalized, infinity, or not normalized,
thenreferto a, b, or c (of that particular paragraph) respectively. If the input argument is a
NAN .or zero, then return that NAN or zero (arg2) as the result.

In the following operation, description *Z" is used to represent the fioating point result of
an operation and “I"” is used to represent an integer result.

If a trapping NAN is one of the operands (arg1 and arg2) and the invalid operation trap is
enabled, then an invalid operation (= 5) trap will be taken before the operation begins
and, hence, the matrix table will not be used. Trapping NANs can be used by the user to
create new or special data types or to provide special handling.

If “NAN" appears in the table as the result, it implies that a new NAN is created. The
MCBB39 Floating Point ROM will return the address of the instruction immediately
following the operation that caused the NAN to be generated. Since the NAN is a new
NAN, the “d" (double NAN), and “t” (trapping NAN) bits will be set to zero. See Section 2
for NAN details.

The final step for most arithmetic operations where the operands are well behaved in-
cludes checking for underfiow, invalid operation, rounding, and overflow. In the operation
descriptions, the following functions and procedures are used in algorithms without
detailed explanations. For clarification, calls to these procedures and functions are
always in upper case in the description of the operations. The functions and procedures
used are:

CKINVALID . Check for invalid result.

OVERFLOW Function. Returns true if overflow occurred.

UNDERFLOW Function. Returns true if underfiow occurred.

OVFL_NO_TRAP Handles overflow when traps are disabled.

SUB_BIAS Handles overflow when traps are enabled by subtracting a
bias.

UNFL_NO_TRAP Handles underflow when traps are disabled.

ADD_BIAS Handles underflow when traps are enabled by adding a
blas.

ROUND Does correct rounding.

Detailed descriptions of the algorithms used for these functions and procedures are in
Appendix D.

‘c2

C.2 ADD (FADD), SUBTRACT (FSUB)

Z=argl+arg2; Z=arg1 +(-arg?)

Opcode = $00 (FADD)
Opcode = $02 (FSUB)

arg2
Normalized | Zero | Infinity | NAN | Not Nor
Normalized b b arg2 | arg2 b
Zero b a arv2 | arg2 b
argl Infinity arg1 argl c arg2 argl
NAN arg1 argl | argl m argl
Not Normalized b b arg2 | arg2 b
a.
2
[+1
d
argt +0

d = +0 in rounding modes RN, RZ, RP

-0 in rounding mode RM

Cc3

1) Align binary points of arg1 and arg2 by unnormalizing the operand with the smaller
exponent until the exponents are equal. Note if both operands are unnormalized.

2) Add the operands in internal form.

3) If arithmetic overflow occurs, right shift fraction one bit and increment exponent.

4) If all bits of the unrounded result are zero, then
sign (Z)= + in rounding modes RN, RZ, RP

sign (Z)= - in rounding mode RM

If either arg1 or arg2 was normalized after step 1, then exponent
(2) = most negative value (i.e., true zero).

Else (*Not all bits are zero®)

if, after step1, both operands were unnormalized,

then go to step 5.
else

Normalize the result, if necessary, by shifting left while decrementing

the exponent untiln=1.

Zero or s may be shifted into r from the right.

5) It UNDERFLOW then
if trap enabled then
ADD__BIAS
ROUND
else
UNFL_NO_TRAP
endif
else
ROUND
CKINVALID
if OVERFLOW then
if trap enabled then
SUB_BIAS
else 3
OVERFL_NO_TRAP
endif
endif
endif

c. If atfine mode:

ary

+ Infinity

= Infinity

+ infinity + infinity
arpl = Infinity c1

c1
- Infinity

c1. Signal invalid operation=2. Z=NAN

If projective closure mode, return NAN and signal invalid operation=8.

m. Return arg2 but set the *'d” bit in the NAN to indicate that this is a “double” NAN.

C.3 MULTIPLY (FMUL)

Z=arg1xarg2
Opcode = $04

The sign of Z is the “exclusive OR" of the signs of arg1 and arg2.

arg2
Normalized | Zero | Infinity | NAN | Not Normalized
Normalized a 0* inf* | arg2 a
Zero 0° 0 b arg2 0
argl Infinity inf* b inf* |arg2 inf
8 NAN arg1 arg1| arg1 m arg1
Not Normalized a 0* inf* | arg2 a

*Sign determined by arg1 “exclusive OR™ arg2

1) Generate sign and exponent. Multiply the significands in internal form.

2) If arithmetic overflow occurs, then right shift the significand one bit and incre-

ment the exponent.
3) If UNDERFLOW then
if trap enabled then
ADD__BIAS
ROUND

else

UNFL_NO_TRAP

3 endif
else
ROUND

CKINVALID

lv OVERFLOW then
if trap enabled then

SUB__BIAS

else
OVERFL_NO_TRAP
endif

endif
endif

b. Signal invalid operation=9. Z=NAN.

m. Return arg2 but set the “d” bit in the NAN to indicate that this is a “‘double” NAN.

Cc5

C.4 DIVIDE (FDIV)

Z=argllarg2 with sign of Z equal to the “exclusive-OR" of the signs of arg1

and arg2.
Opcode = $06
arg?2
Normalized | Zero | Infinity | NAN | Not Normalized
Normalized c a 0 arg2 b
Zero 0 b 0* arg2 0
argl Infinity inf inf* b arg2 int*
NAN arg1 arg1| argl m argl
Not Normalized c a . 0° arg2 b

*With correct sign

a. Signal Division by zero.
Z =infinity with correct sign

b.Z = NAN. Signal invalid operation=4.

c.
1) Generate sign and exponent. Divide the significands in internal format.
2) If n=0, then teft shifi significand one bit and decrement exponent. S need not par-
ticipate in the left shift. A zero or s may be shifted into r from the right.
3) If UNDERFLOW then
if trap enabled then
ADD__BIAS
ROUND
else
UNFL_NO_TRAP
endif
else
ROUND
CKINVALID
it OVERFLOW then
if trap enabled then

SUB_BIAS
else
OVFL_NO_TRAP
endif
endif
endif

m. Return arg2 but set the “d" bit in the NAN to indicate that this is a2 “double™ NAN.

C.5 REMAINDER (FREM)

Z=argi—-arg2xn
Where n=integer part of arg1/arg2 in round nearest.

Opcode = $08
arg2
Normalized | Zero | Infinity | NAN | Not Normalized
Normalized b a argl | arg2 a
Zero arg1 a argl | arg2 a
arg1 Infinity a a a arg2 a
NAN argl argl | argl m arg1
Not Normalized b a argl | arg2 a

a. Signal invalid operation = 10. Set Z to NAN.

b. Create number of integer bits in quotient “n" as:
n=expl-exp2-1
Generate “n" quotient bits, leaving raw remainder “r.”
If r>arg2/2
then
remainder =r - arg2
else
remainder =r.
Normalize remainder
If UNDERFLOW then
if trap enabled then
ADD__BIAS
ROUND

else
UNFL_NO_TRAP
endif
else
ROUND
CKINVALID
If OVERFLOW then
if trap enabled then
SUB_BIAS
else
OVFL_NO_TRAP
endif

m. Return arg?2 but set the “d” bit in the NAN to indicate that this is a “double™ NAN.

oy g

C.6 SQUARE ROOT (FSQRT)

Z=SQRT (arg2)

Opcode =$12
P A A g
Normalized a
Zero arg2

arg2 Infinity c

NAN arg2
Not Normalized b

a.

1) For a positive normalized number: compute Z= SQRT (arg2) to the number of bits
required to produce a correctly rounded result. To round correctly in all cases,
calculate two more bits of Z than the precision of the destination. ROUND as in
Appendix C. .

2) For negative normalized numbers: signal invalid operation =1; Z= NAN.
b. Signal invalid operation=1; Z= NAN.

c:
1) For projective mode signa! invalid operation - 1; Z=NAN.

2) In affine mode, for plus infinity, set Z=arg2. For minus infinity, signal invalid
operation=1; Z= NAN.

C.7 INTEGER PART (FINT)

Z=Integer part of arg2

Opcode =$14
—_— —z
Normalized a
Zero arg2
arg2 Infinity arg2
NAN arg2
Not Normalized a

1) If arg2 has no fraction bits in its signficand, thenset Zto arg2. This occurs If the

exponent is so large thai no fraction bits exist, for ple, in single p a
with an unb (o greater than or equal 10 23.

2) If arg2 has fraction bits, right shift the arg2 significand, while incrementing the ex-
ponent, until no bits (zero or nonzero) of the fractional part of arg2 lie within the
rounding precision in effect. When this occurs, the unbiased exponent will be:

single 23
double 52
extended 63

3) ROUND as specified in Appendix D.

4) If all significand bits are zero, then Z = 0 with the sign of Z, otherwnse normalize Z.
Zero or s is shifted into g from the right since s =0 after rounding.

C.8 ABSOLUTE VALUE (FAB)

Z=|arg2|
Opcode = $1E

Normalized
Zero
arg2 Infinity
NAN al
Not Normalized

Do D[N

a.Z=arg2 with zero (plus) sign.

[

C.9 NEGATE (FNEG)

= —arg2
Opcode = $20

F SN L
Normalized - arg2
Zero - —arg2

arg2 Infinity —arg2
NAN arg2
Not Normalized | —arg2

. €.10 COMPARE (FCMP, FTCMP, FPCMP, FTPCMP)

CC=argi—arg2

Compare arg1 to arg2 and set condition codes dingly or g a trueffalse value
for a predicate.

The four versions of compare are:

FCMP (Opcode — $8A) — Compare arg1 with arg2 and set the condition codes. Do not
trap on unordered uniess the trap on the unordered bit (UNOR) is set in the enable byte of
the FPCB.

FTCMP (Opcode — $CC) — Compare arg1 with arg2 and set the condition codes. Trap if

the unordered condition occurs regardiess of the state of the UNOR bit in the enable byte
of the FPCB.

FPCMP (Opcode — $BE) — Compare arg1 with arg2. Either affirm or disaffirm an input
predicate. Do not trap on unordered unless the UNOR bit is set in the enable byte of the
FPCB. For register calls, the Z-bit in the condition code register is set to 1 for affirm or
true, and set to O for disaffirm or false. For stack calls, a byte of zeros is pushed on the
top of the stack for true and a byte of ones ($FF) is p d for false. Predi

are used often by HLLs when evaluating the conditional expression in comrol
statements like (F.

FTPCMP (Opcode — $D0) — Compare arg1 with arg2. Either affirm or disaffirm an input
predicate. Store the true or false indication in the result. Trap If the unordered condition
occurs regardliess of the state of the UNOR bit in the enable byte of the FPCB.

Since a compare allows different precisi the X-register, on the call, con-

tains a parameter specifying the precls|on of nrp‘l and arg2 and the pvodncne ifthisis a
predicate call. The format of the X-repister is:

Predicates 8 7 6 4 0

1[5000 ¢I“>J =]<I u]o] arg1] 2]2"97]

c-10

Where arg1 or arg2 is defined:
000

Single
001 Double
010 Extended
011 Unused (defaults to extended)
100 Unused (defaults to extended)

101-111 Undefined
The predicates are >, =, #, <, and unordered or the combinations: = or <.

Once the arguments have been expanded into internal format, the following comparisons
are made with the internal values.

arg2
Normalized | Zero | infinity | NAN | Not Normalized
Normalized a a b 1 d
Zero a ("] b 1 d
arg1 Infinity c (3 e f c
NAN 1 f f f 1
Not Normalized d d b f d
STEP 1.
a.

argl +
- < . |
*Compare magnitudes of arg1 and arg2. Go to step 2.

b. If affine mode, then
if arg2= <+ infinity then < else >. Go to step 2. -
If projective mode, signal unordered. Go to step 2.

c. If affine mode, then
if arg1= +infinity, then > else <. Go to step 2.
If projective mode, then signal unordered. Go to step 2.

d. Normalize one or both of the input arguments.
Set unnormal zeros to true zeros.
If both arguments are zero, then go to “g” else go to “a.”

e. In projective mode set to equal. In affine mode:

arg2

go to step 2.

—~

{. Set unordered. Go to step 2.

g. Set to equal. Go to step 2.

STEP 2.

1) If condition codes are to be returned (FCMP or FTCMP), then set the returned con-
dition code bits in the following patterns:

NljZ|Vv]cC
> ojojojo
< 1]1]0j0}0
= oj1]0}o

Unordered 0jojo|1

This allows the following signed branches to be taken immediately following the

return from FCMP or FTCMP.

Condition | Branch

Test for Branch

(LBGT
(L)BGE
-(LBLT
(LBLE
(L)BEQ
(L)BNE
Unordered (L)BCS

#NAANYV

(not [Ne V]) and (not 2)=1
not (NeV)=1

not (NeV)=0

(not [N e V]) and (not Z)=0
2=1

Z=0

C=1

If CMP and the unordered trap is disabled, a BCS should immediately follow the
call and precede any of the other branches:

CMP arp1, arg2
BCS unordered
BGE labe!

If unordered occurred, then set

the UNOR bit in the status byte of the FPCB so

that the trap will be taken during post processing.

2) If a predicate is to be returned,
less than affirms:
equal affirms:
greater than affirms:
unordered atfirms:
less than disaffirms:
equal disaffirms:
greater than disaffirms:
unordered disaffirms:

The result returned for affirmed
SFF byte for a stack call. For a

then:

<=z

==<2

>z
unordered #

= 2 > unordered
< > ¥ unordered
= < < unordered
<s=2>

is a zero byte and for disatfirmed it is a minus 1 or
register call, Z=1 iff affirm.

C12

If unordered occurred, then set the UNOR bit in the status byte of the FPCB so
that the trap will be taken during post-processing. Additionally, if the predicate is
=, then set the result to true to give the user a test for a NAN; L.e., If Az Areturns
true, then “A" is a NAN.

If unordered and TPCMP or PCMP then
If # then
set result true
else if not (= or unordered) then
signal unordered and invalid operation=6
s0 that a trap will be taken during
post-processing
endif
endif

C.11 FLOATING TO BINARY INTEGER (FFIXS, FFIXD)

I=INTEGER (arg2)
1= 16 bit signed integer for FFIXS (Opcode = $16)
1 =32 bit signed integer for FFIXD (Opcode = $18)

The resultant integer is stored on the internal stack in the first 2(4) bytes of the fraction
for the result with the lower address containing the most significant byte.

|

Normalized d
Zero 0
arg2 Infinity a
NAN b
Not Normalized | d

STEP 1.

a. Set V bit in returned condition code register and integer overflow bit in status. Set
| as shown below:

short positive 32767

short negative - 32768

long positive 2,147 483,647
long negative —2,147,4B3,648

b. Signal invalid operation = 3; return | = address of the instruction following the call
to the floating point package.

c. If arg2 is not an integer, then call FINT to convert it to an integer. Convert arg2to a
y binary integer and return it to the destination. If the integer exceeds the size of the
destination, then go to “a" above.

ok L]

P

STEP 2.

Set the Z and N bits in the returned condition codes (V will already be set if overflow oc-
curred) according to the resultant integer.

C.12 BINARY INTEGER TO FLOATING (FFLTS, FFLTD)

Z=FLOAT (arg2)
arg2 = 16 bit signed integer for FFLTS (Opcode = $24)
arg2 = 32 bit signed integer for FFLTD (Opcode = $26)

The integer is stored on the internal stack in the first 2(4) bytes of the fraction for arg2.

a. Convert arg?2 to floating representation. If arg2 cannot be represented exactly,
then ROUND as described in Appendix D.

C.13 BINARY FLOATING TO DECIMAL FLOATING STRING (BINDEC)

Opcode =$1C
Required Functions and Tables.

For both BINDEC and DECBIN, several functions and tables are required. BINSTR and
STRBIN are required as well as a function to find the log__base__10(X). BINSTR converts
a binary floating integer to a signed unpacked BCD string. STRBIN converts a signed
decimal unpacked BCD string to a binary floating integer. Fortunately, the
log__base__10(X) can be derived from:

log_base__2(X) x log_base__10(2).

Also, the log__base__10(X) need only be calculated to the nearest integer. Fortunately,
this can be accomplished by noting that log__base__2(X) is approximately equal to the
unbiased exponent of X. A table of the powers of 10 (in internal format) will be needed.
This table need not contain all powers of 10 as some can be derived from the others.
Negative powers shall be obtained by dividing by the corresponding positive powers in-
stead of multiplying. The foliowing 31 values (to full internal accuracy) will be required in
the table:

100

101

.

L]

.

.

1026

1027

1054

10108

10216

C-14

Argument Requirements

For register calls, the U register contains the constant “k" that specifies the number of
significant digits desired.

For stack calls, the input stack looks like:

Where n=4, B, or 10 bytes
S =thardware stack pointer

The return string is a standard BCD string as defined in Section 2 (BCD Strings).

Conversion Process

Given binary floating point number arg2 and an integer k (passed in arg1) with 1<k=<9 for
single precision and 1< k=17 for double precision, we can compute the signed decimal
strings | and E such that | has k significant digits and interpreting | and E as the integers
they represent: g

arg2=1x10(E+1-K) = sd dddddddd x 10E

where s is the sign of arg2 and the ds are the k decimal digits of I.

The size of | and E are defined by the output string generated by BINSTR for the sup-
ported precisions.

STEP 1.
String
Normalized c
Zero b
arg2 Infinity 8
NAN d
Not Normalized c

a. For +infinity, deliver a nondecimal string with se = $OA and the remaining bytes
equal to zero.

For —infinity, deliver a nondecimal string with se = $OB and the remaining bytes
equal to zero.

b. I=string of “40" or *~0"; E= String of “0."” Go to step 2.

C15

c.
1) Remember sign of arg2. Let p = absolute__value (arg2).
Remember whether arg2 is normalized.
1a) If arg2 is unnormal zero, then go to b.
2) If p is not denormalized, compute g=Ilong__base__10(p); otherwise let
q=log_base__10 (smaliest normalized number).
3) Remember the current rounding mode. Compute:
v=FINT(@Q)+1-k
with rounding mode RZ.
4) Compute w=FINT (p/10Y) using powers of 10 from the tables with rounding
mode RN. Restore original rounding mode.
5) Adjust w for special cases:
i. If w2{10k)+ 1, then increment v and go to 4.
Ii. If w=10K, then increment v, divide w by 10 (exactly) and go to 6.

lil. If w<10(k=1) -1 and arg2 was normalized in step 1, then decrement v
and

go to 4.
6) |=BINSTR (w with sign of arg?2); E= BINSTR (v).

d. Deliver a nondecimal string with se = $0C followed, in the exponent field, by the
unpacked hex address where the NAN was created.

STEP 2.
Return a BCD string as defined in Section 2 (paragraph 2.5) with p=0.

C.14 DECIMAL FLOATING STRING TO BINARY FLOATING (DECBIN)

Opcode = $22
Required Funtions and Tables

For both BINDEC and DECBIN, several functions and tables are required. BINSTR and
STRBIN are required. BINSTR converts a binary floating integer to a signed unpacked
BCD string. STRBIN converts a signed unpacked BCD string to a binary fioating integer.
A table of the powers of 10 (in internal format) will be needed. This table need not contain
all powers of 10 as some can be derived from the others. Negative powers shall be ob-
tained by dividing by the corresponding positive powers instead of multiplying. Those re-
quired in the table are:

100

101

C-16

Argument Requirements
For stack calls the input stack looks like:

[|BCD String] FPCB_]
s

For the format of the BCD string see Section 2 (BCD Strings Paragraph). The total size of
the BCD string Is 26 bytes.

The result for stack calls is on top of the stack.

For repgister calls:
X=result
D=FPCB
U = pointer to input BCD string

The input argument is a standard BCD string as defined in Section 2 (BCD Strings
paragraph) where “p" is set to the number of fraction digits to the right of the decimal
point.

Conversion Process

" The number to be converted (arg2) can be thought of as a number of the form:
arg2 =sddddd.DDDDDDDDD x 10E

On entry, arg2 contains a pointer to & string as defined in paragraph 24. Let
| =sddddd.DDDDDDDDD. arg2 contains an integer p that indicates how many digits of |
are to the right of the decimal point such that:

arg2=1x(10- P)x (10E)

1) Compute U=STRBIN (I) and w = binary__integer__of (E)
2) Compute result: Z=ux 10(W=P)

3) If UNDERFLOW then
if trap enabled then
Z=NAN
else
UNFL_NO_TRAP
endif
endif
It OVERFLOW then
If trap enabled then
Z=NAN
else
OVFL_NO_TRAP
endif
endif

Ca7

C.15 MOVE (MOV)

Move arg2—resuit
Opcode =$9A

Since move allows for arguments of different precisions, it requires that the precisions
be specified by the calling program in & size word parameter. The U-register is used to
hold the size word in register calls. In stack calls the size word is pushed onto the top of
the stack above arg2 but before the pointer to the FPCB. The format of the size word is:

15

8 6 4 2 0
[oo fo] arg2 o] result |

Where arg2 (source) or result (destination) is defined:

000 Single

001 Double

010 Extended

o1 Extended round to single
100 Extended round to double
101111 liiegal ’

For stack calls the calling stack looks like:

[17] ero2 | sizeword | Pointerto Frcs |
s

Move allows the input argument and the result to be of different precisions. For stack
calls the MOV operations transform the stack top from the source precision to the
destination precision. ~

For moves where the precision of arg2 equals the precision of the result, the arguments
will not be moved to the stack since no conversion is really needed; otherwise, the source
argument (arg2) will be moved onto the internal stack. This is necessary since If the MOV
were a conversion from a shorter to a longer precision value at the same address, the
result might overwrite parts of the source before they have been read.

Result
(Destination)
Normalized a
Zero arg2
arg2 Infinity arg2
(Source) NAN arg2
Not Normalized b

C-18

a.
If the destination Is shorter than the source, then Z=arg2.
H UNDERFLOW then
if trap disabled then
UNFL_NO_TRAP
else
deliver to the trap handler the result in internal

format but rounded to the precision of the destination.
endif

endif
ROUND to the precision of the destination
CKINVALID
If OVERFLOW then
if trap disabled then OVFL_NO_TRAP
else
deliver to the trap handier the result in internal

format but rounded to the precision of the destination.
endif
endif
If the destination field is wider than the source, then the
move is exact.

b.
If (single to double) then invalid operation =15
Else If (source = ext) and (dest< > ext) and (not denormalized)
invalid operation =16
else
gotoa.
endif
endif

C18/C20

APPENDIX D
ROUNDING AND EXCEPTION CHECKING ROUTINES

D.1 INTRODUCTION

The following routines and functions are used after the arithmetic operations to round
and to detect error conditions.

D.2 ROUNDING

Rounding is accomplished using the v, 1, g, 4, and s bits as defined in the internal for-
mats. In general, the significand of the number to be rounded looks like:

lulasih e fainas v o] m.a | ;j_—l

where:
v=overflow bit
n=1 (explicit 1.0)
{=traction
I=1s bit of fraction
@ = guard bit
r=round bits
s = sticky bit

The s bit is the logical “OR" of all the bits to the right of the r bits. Thus during the
calculation stage of an arithmetic operation, any nonzero bits which are generated that
are to the right of the r bits show as a 1 in the s bit. If the precision mode specified in the
control byte of the FPCB is 6 or 7, then rounding should be to the precision specified. The
following algorithm is used to round the result to 1 of the four rounding modes:

begin
If g=s=r=0 then result is exact

else (not all zero)
set inexact result flag bit

case rounding mode of
RM: if sign=1thenadd 1to |
RP: if sign=0then add 1to |
RN:ifg=1and r=s=0 then
if1-1thenadd1tog
eiseadd 1tog
(RZ falls through)
end case
if v=1then
shift right
increment exponent
endif
setg=r=s=0
endif
end

where:
RM =round to minus
RP =round to plus
RN =round to nearest
RZ =round to zero

D.3 EXCEPTION HANDLING

D.3.1 Invalid Operation

Invalid operation encompasses problems arising in a variety of arithmetic operations; it
is the blanket covering those errors which do not occur frequently enough or are not im-

portant enough to merit their own fault condition. The result to be delivered by an invalid
operation is a NAN.

D.3.2 Underfiow

In a general sense, underflow is the condition that exists when an arithmetic operation
creates a result that is too small to be represented in the normal memory format for the
destination. If the trap is enabled when underflow occurs, the user can determine what
he wants to do. The actual result of the operation will not be lost since the internal for-
mats are capable of representing the underflowed number. If no trap is enabled, the
fioating point package will automatically denormalize the result as discussed previously
(gentie underfiow). In the case of trap enabled, but the trap wishes to return the result,
the delivered exponent will be the result of adding a bias adjust for each precision as

D-2

shown below. This bias adjusts the exponent so that it will contain a number in the mid-
dle of the exponent range.

Bias adjust for overflow/underfiow
Single 182
Double 1536
Extended 24576

D.3.3 Overflow

In & general sense, overfiow is the condition that exists whan an arithmetic operation

creates a resull that is too large and cannot be represented in the normal memory format
for the destination.

Overflow is handled much more harshly and quickly than underfiow and with a cor-
responding loss of information. The number system chosen is slightly biased towards
underflow for this reason. I a trap is to be taken on overflow, then a bias is subtracted
from the exponent to wrap it around into the range of valid exponents. The bias for each
precision is given above. If no trap is to be taken, then a suitable result is returned.

D.3.4 Division by Zero

This exception occurs when a normal zero divisor occurs in a division. If the divisor is nor-
mal zero and the dividend is finite and nonzero, the default result is infinity with the cor-

rect sign. If the division by zero trap is enabled, then it is taken and the default result is
returned.

D.3.5 Inexact Result

1f the rounded result of an operation is not exact or if it overflows to infinity, then the in-
exact exception shall be signaled unless the result would be an invalid result. If the trap
is enabled, it is taken; otherwise, the rounded result or the infinity that resulted from
overflow shall be the default value returned.

D.3.6 Integer Overflow

This occurs when a large floating point number is converied to an integer that cannot be
represented in the destination. If the trap is enabled, it will be taken and the caller can
“fix" the result. If no trap is enabled, the largest positive or negative integer is returned.

D.3.7 Unordered

Unordered occurs when a parison is made b a NAN and anything else or when
infinity is compared to anything except itself in projective closure.

D.3.8 Error Trap Handling

When an error trap occurs, the post processing code passes control to the location
specified in the FPCB vector with the U register pointing to the stack frame. The trap
routine may then modify the result on the stack frame or it may choose to create a new
result and store the result directly in memory. If the result on the stack frame is modified,
the routine must remember that this number is in internal format. On return from the error
trap routine, if the C-bit is set, the result in the stack frame will be moved to memory. i
the C-bit is cleared, no result will be delivered to the destination.

On entry to the trap routine, the U-register will contain the pointer to the current stack
frame. The temporary status stored in the stack frame should be used to determine the
status of the last operation. If more than one bit is set in the status register, the fioating
point package will determine which trap should have precedence as discussed in Section
4 (Exception Modes pargraph). In the case where the highest precedence exception does
not have its trap enabled, then the next highest precedence will be checked, etc., until
the highest precedence enabled trap, if any, is found.

D.4 ALGORITHMS FOR EXCEPTION PROCESSING

The following are the algorithms implemented in the MC6839 to check for the process ex-
ceptions.

D.4.1 Check for Invalid (CKINVALID)

procedure CKINVALID
* begin
if not infinity or true zero then
If destination precision is single or double then
if result is denormalized
fix exponent for denorm result

eise
if not normalized then
iop=16
endif
endif
endif
endif

end

D.4.2 Test for Overfiow (OVERFLOW)

function OVERFLOW

begin
(“test for overfiow*)
if the rounded result is finite and its exponent is too large for the destination
then OVERFLOW: = true; set overfiow flag
else OVERFLOW: = false
end

D.4.3 Overflow With Traps Disabled (OVFL NO TRAP)

procedure OVFL_NO_TRAP
begin
set inexact result flag;
If rounding mode is round to — infinity
then
clear overflow flag
if result is positive
then
if result is normalized
then
deliver largest positive
number to destination
else
deliver significand and largest
exponent to destination
endif (*result is normalized®)
else (“result is negative®)
deliver — infinity to destination
endif; (“result is positive®)
endif; (*rounding mode is to — infinity*)
if rounding mode is round to + infinity
then
clear overflow flag
if result is negative
then
if result is normalized
then
deliver largest negative number to destination
else
deliver significand and largest
exponent to destination
endif; (*result is normalized)
else (“result is positive*)
deliver + infinity to destination
endif; (“result is negative®)
endif; (*rounding mode is to + infinity*)

If rounding mode Is to nearest or to zero
then
deliver properly signed infinity to destination
endif; (*round to nearest or to zero®)
end

D5

D.4.4 Subtract Bias on Overfiow (SUB BIAS)

procedure SUB_BIAS
begin

subtract bias (from table shown in paragraph D.3.2) from exponent
end

D.4.5 Test for Underflow (UNDERFLOW)

function UNDERFLOW
begin
if exponent not = $8000 (true zero)
if exponent is too small for destination format
then UNDERFLOW: =true; set underflow fiag
else UNDERFLOW: = false
endif
else UNDERFLOW: = false
endif
end

D.4.6 Add Bias on Underfiow (ADD BIAS)

Procedure ADD__BIAS
begin

add bias (from table shown in paragraph D.3.2) to exponent
end

D.4.7 Underflow With Traps Disabled (UNFL NO TRAP)

Procedure UNFL__NO__TRAP
begin
denormalized unrounded result;
ROUND denormalized result;
if fraction =0 then set to true zero
deliver denormalized and rounded (only once)
result to destination;
If rounding mode is either round
to —infinity or to + Infinity
then
clear underfiow flag;
endif; (*round to infinity®)
end

APPENDIX E

PROGRAM DETAILS AND STACK FRAME

DESCRIPTION

E.1 PRE-PROCESSING/POST-PROCESSING

All operations undergo a pre-processing step where the calling arguments are moved
from their present locations to an internal stack frame and a post-processing step where
the results are returned from the stack frame. In general, the operation of any function

looks like:

save caller registers on the stack
determine function opcode
if register call then

initialize stack frame for register call

move argument(s) into internal stack frame

if no input arg is a trapping NAN, then do function

check for traps

if (no traps) or (trap handier wants result returned)
then move result to user

cleanup stack

else (stack call)

adjust stack if necessary®

initialize stack frame for stack call

move argument(s) to internal stack frame

if no input arg is a trapping NAN, then do function

check for traps

if (no traps) or (trap handlier wants result returned)
then move result to stack top

cleanup stack

adjust stack if necessary*

endif
restore caller registers
returmn

E.1.1 Stack Frame

Upon execution, the floating point package immediately reserves an area on th_e active
hardware stack for its execution time local variables. Once this “stack frame"is initializ-
ed, It is used by all the modules of the program. The stack frame area is released on exit

from the call.

*For stack calls, adjusting the stack before or atier processing may be necessary H the total size of the input arguments

s not equa’ to the size of the output argument.

E1

The user may need to know the details of the stack frame if he plnns to wvlle trap
routines to manipulate results in the internal format. Appendix F on
the internal format for floating point numbers on the stack frame.

Figures E-1 and E-2 are examples of the stack frame configuration. Figure E-1 is for a
register call and Figure E-2 is for a stack call. Notice that from mnemonic “TYPE 1" down
to the bottom of the stack, the two stack frames are identical. This aliows the actual
operation routines to be identical regardiess of the type of call. During execution of the
operation, the U-register always points to the bottom of the stack frame.

Mnemonic

CALLPC Calie's PC
VREG. PARG1[Pomter 10 Argumeni 1 | Catier's U |
YREG. PARGZ Pomter 10 Argumen: 2 | Calier's ¥ |
XREG, PRESUL Pomter 10 Resun Cate's X |
DREG PFPCEZ Pointer 10 FPCB Calier's D |
CCREC Conduon Cooes Cave's CC |
REGPC IREQs Retwrr PC
§ 2°g1 Type (1 Bute:
. (8 Byres' Argument 1
ThACTT Y r) imena’ Forma:
13 Bytes'
Exe1 Exponent (2
SIGNY. arg? Sig-
TYPE2 2:92 Type 5 Byte
Fra:
2 19 Bytes: Argument 2
. v) in interns! Forma:
FRAGTZ 113 Byres)
EXPZ \ Exponent (20
SIGN2. 2132 . Swer
TYPER Resutt Type 11 Byte)
| Fracton
(9 Bytes' " | Resun
m interna' Forma:
FRACE 13 Byies!
EXPF Exponent (21
SIGNR, RESULT] gn
STIKY Sucky Byte
TPARAM Temporary Paramerers (2/
TSTAT Temporary Siaws (2)
PPREC Result Precision FP Local Vanables
PFPCB Pomer 10 FPCE
P10S Pomter 10 TOS
FUNCY Opceoe - U

Figure E-1. Register Call Stack Frame

Mnemonic Argument 1
TOS — Argument 2
FPCB (21

CALLPC
UREG
YREG
XREG
DREG

CCREG

ISTRPC

TYPEL
FRACT1
EXP1
SIGN 1, 891
TYPE2

FRACT2

EXP2
SIGNZ, »

TYPER

FRACTR

EXPR
SIGNR, RESULT

STIKY
TPARAM
TSTAT
RPREC
PFPCB
PTOS
FUNCT

L~ ——

Calier's PC
Calier's U -
Calier's Y
Calier's X
Calier's D

Condition Codes

ISTACKs Return PC

2191 Type (1 Byie)
Fraction
© Bywes)

Exponent (2)
Swgn

2152 Type (1 Byte)
4 Fraction
(8 Bytes)

|

Exponent 2)
Sign

Resut Type (1 Bnie!
Fracuon
19 Bytes)

r

Exponent (2)
Sign

8 Sticky Byie

|_Temporary Parameters w:

Temporary Sustus (2)
Resuh Precision

Pointe 10 FPCB
Pointer 10 TOS
Opcoce

Stack
Before
Ca!

Argument 1
in internal Format
(13 Bytes)

Argument 2
in Interna! Format
(13 Byres!

Resutt

n Interna’ Format

13 Bytes)

FP Local Vanables

-«

Figure E-2. Stack Call Stack Frame

Speclal handling of the stack frame occurs for BCD string conversions. The actual BCD

strings will not be moved onto the stack frame. A pointer to the strings will be stored in
the stack frame instead. The op i will

memory or stack.

E3

the strings directly in the user's

Special handling also occurs for MOV with equal precision arguments. In this case the
siack frame will not normally be created since it would slow down rather than speed up
the operation. However, a stack frame will be created for a MOV with different precision
arguments. This enables the trap handler to do intelligent processing.

All operations have a result except for nonpredicate compares which only return with the
appropriate bits set in the dition code repister. Pred P only return a
1-byte “yes” or “no” as the result.

For operations that convert from an integer to floating point, the integer will be stored in
the fraction of argument 2. For operations that convert from fioating point to an integer,
the resulting integer is stored in the fraction of the result.

Note that space for argument 1 is reserved on the stack frame even if the call is monadic.
This insures consistent use of subroutines to manipulate arguments on the stack.

If bit 3 (NRM) of the control byte in the FPCB is set, then all denormalized (not unnor-
malized) numbers will be normalized during the move onto the stack frame.

E.1.2 FP (Floating Point) Variables

E.1.2.1 POINTER TO FPCB (PFPCB). This word contains the address of the start of the
FPCB to be used by this call.

E.1.2.2 TOS (TOP OF STACK) POINTER (PTOS). For stack calls, this word points to the
top fioating point argument on the stack when the fioating point package was initially
called. This may not be the address just above the caller return PC, since it might have
been necessary to reserve some empty stack space when the result of a function uses
more bytes on the stack than the input arguments. Note that the pointer to the FPCB, as
passed by the user, is always at PTOS-2. 4

E.1.2.3 TEMPORARY PARAMETERS (TPARAM). This temporary two byte location is used
by DECBIN and BINDEC to store parameters. It is also used by calis to MOV or the com-

pares to store the parameter word and may be used by other operations as a scratch
location.

E.1.2.4 TEMPORARY STATUS (TSTAT). This temporary two byte status is used by the
floating point package to generate status bytes of this operation. The first byte (lower ad-
dress) has a format identical to the status byte in the FPCB. At the completion of the
operation this temporary status is logically “ORed" into the existing status in the caller
FPCB. The second byte contains a temporary byte that has the same format as the
secondary status byte in the FPCB. At the pletion of the operation, if an invalid
operation occurred, this byte will be written into the secondary status.

E4

E.1.2.5 RESULT PRECISION (RPREC). The index stored at this location defines the preci-
sion of the result.

Index Precision
0 Single
2 Double
4 Extended

€ Extended Rounded Single
8 Extended Rounded Double

For compares, this location contains the index of arg2 instead of the result.

E.1.2.6 OPCODE (FUNCT). This byte contains the opcode picked up from the user's call-
ing sequence. This is used by various subroutines. It also allows an error trap to deter-
mine what operation caused an error. Some bits in the opcode have special meaning:

bit 7=1=Mixed size arguments (MOV, CMP)

bit 6=1=Trap on unordered compare

bit 5=0= Function number

E.1.2.7 STICKY BYTE (STIKY). This byte is used during arithmetic operations to “OR" all
the least significant bits of an operation. The sticky byte is then used during rounding.
Some sticky bits are also picked up by “ROUND" from the low order bits of the internal
fraction.

E.1.2.8 ARGUMENT TYPE (TYPEx). A byte is reserved for each argument to indicate its
type. The routine that initializes the stack frame initializes the values for TYPE 1 and
TYPE 2. The values are:

0=Normal, in range, normalized value

2=Normal zero

4 = Infinity =
6= Not a number

8= Not normalized

Note that an unnormalized zero will have an index=8, #2.
This byte occupies the highest address of the fraction for each argument.
The type of the result may not be valid at the time of a trap.

E.1.2.9 SIGNX, EXPX, FRACTX. The bytes describe the fields in internal format numbers.
Appendix F provides details of internal format numbers.

E-5/E€

APPENDIX F
INTERNAL FORMATS

F.1 INTRODUCTION

The memory formats are chosen to provide the greatest amount of precision in the least
amount of memory, whereas, the internal formats are selected to permit the easiest and
fastest implementations of the desired operations. A caller to a floating point subroutine
passes arguments in memory formats and receives the result in memory format;
however, internally the fioating point package converts to the internal formats, does the
operation, and then converts the result back to memory format.

F.2 SINGLE INTERNAL FORMAT

This format consists of 7 bytes:

e—2B8 Bits—>!
Sign

je——16 Bits———{
Unbiased Exponent

24 Bit } 8 Bits—>]

1. 23 Bit Fraction]E]ﬂr]dr]ylr]zj:) :

where:

sign = positive or negative byte
containing the sign of the fraction.
Only the most significant bit is defined:
b7 =0=plus; b7 =1=minus

unbiased exponent =twos complement exponent

(] = guard bit
r =rounding bits
£ 3 = sticky bit

The g, 1, and s bits are used for rounding as described in Appendix D.

F.3 DOUBLE INTERNAL FORMAT
=—B Bits—»

fe————16 Bits———]
Unbiased Exponent

re———54 Bits———»4«——10 Bits—

[1. s3Bit Fraction]g]rIv]r]rlr];]:l

F.4 EXTENDED INTERNAL FORMAT

le— B Bits —
Sign

16 Bits
Unbiased Exponent

je——64 Bits————>j«———B Bits——>|

1. 638it Fraction | o[e[] e[]] r];h

Note that single, double, and extended internal formats differ only in the number and
location of the g, r, and s bits.

F.5 ZERO
Zero is represented by a number with the llest unbiased exp and a zero signifi-
cand:
[]00.... 0000 | 0 |
F.8 INIFINITY

Infinity has the maximum unbiased exponent and a zero significand:

[;IO‘IHH....‘H] 0 J

F2

F.7 NANS

NANs have the largest unbiased exponent and a nonzero significand. The operation ad-
dresses, “t" and “‘d,” are impiementation f and are defined in Section 2 (Not a
Number paragraph).

IdJ 0. ... 1M l 0] t] Operation Address' OOOOODOOJ

The operation address always appears in the 16 bits immediately to the right of the t bit.

F.8 INTERNAL UNNORMALIZED NUMBERS

Unnormalized numbers occur only in extended or internal format. Unnormalized numbers
have an exponent greater than the internal formats minimum (i.e., they are not denor-
malized or normal zero) and the explicit leading bit is a zero. If the significand is zero, this
is an unnormalized zero. Even though unnormalized and denormalized numbers are
handled similarly in most cases, they should not be confused. Denormalized numbers are
numbers that are very small (have minimum exponent) and hence have lost some bits of
significance. Unnormalized numbers are not necessarily small (the exponent may be
large or small) but the significand has lost some bits of significance, hence, the explicit
bit and possibly some of the bits to the right of the explicit bit are zero.

| s] >100. . . 000] 0. Signlﬁcand—]

Note that unnormalized numbers cannot be represented (hence cannot exist) for smgle
and double formats. Unnormalized numbers come into when der
numbers, in single or double formats, are represented in extended or internal formats.

F-3/F4

APPENDIX G
BASIC LEVELS OF PRECISION

G.1 SINGLE PRECISION SPECIFICATION

Length in Bits

Fields:
s =sign
€ =exponent
{=significand

Storage Format:

Interpretation of Sign:
positive
negative

Normalized Numbers:
interpretation of e
bias of e
range of e
interpretation of f
relation to represent real numbers

Signed Zeros:
e=
t=

Reserved Operands:
Denormalized Numbers:
e=
bias of e
interpretation of f
range of f
relation to represent real numbers

Signed Infinities:

interpretation of f

32

unsigned integer
127
O<e<225

11
(-12x2(e-127)x 1.t

0

126

X

nonzero
(-1)5x2-126x0f

255
0

255
nonzero
don't care

Ranges:
maximum positive normalized
minimum positive normalized
minimum positive denormalized

G.2 DOUBLE PRECISION SPECIFICATION

Length In Bits

Fields:
s=sign
e = exponent
f=significand

Storage Format:

Interpretation of Sign:
positive
negative

Normalized Numbers
interpretation of e
bias of e
range of e
interpretation of f
relation to represent real numbers

Signed Zeros:
e=
t=

Reserved Operands:
Denormalized Numers:
e
bias of e
interpretation of f
range of {
relation to represent real numbers

Signed Infinities
e=
f=

NANSs:
e=
{=
interpretation of f

3.4x1038
1.2x10-38
14x —45

64

1
1
(1)+52

unsigned integer
1023

O<e<2047

1.4

(= 1) x2(e—1023) 5 1 ¢

oo

=0

1022

o.f

nonzero
(-1)sx2-1022x0f

2047
0

2047
nonzero
don’t care

N

Ranges:

maximum positive normalized 18 x 10307

minimum positive normalized 2.2 x 10— 308
minimum positive denormalized 4.9 x 10— 324

G.3 EXTENDED PRECISION SPECIFICATION

Length in Bits
Fields:
s =sign
e =exponent
j=integer part
f = significand

Storage Format:

Interpretation of sign:
positive
negative

Normalized Numbers:
interpretation of
bias of e
rangeof e
interpretation of significand
relation to represent real numbers

Signed Zeros:
e=
significand =

Reserved Operands:
Denormalized Numbers:
e=
bias of e
interpretation of significand
range of {
relation to represent real numbers

Signed Infinities:
e=
significand =

NANSs:
e=
significand =
interpretation of significand

twos complement integer
0

—163B4<e< 16383

it

(=1)S x28Xj.t

— 16384 ($4000)
0

—16384

0

of

nonzero
(-1)5x2-16384 ¢

16383 ($3FFF)
0

16383 ($3FFF)
nonzero
don't care

Ranges:

maximum positive normalize

positive nor

d

P

G4

6x 104931
8x10-4933
8 x 10— 4952

[I] i— T C o n | 0 n| I E[=mat]
U o " L [u [L]
a3 pesequn _ | 00008 (I] [] Wiy
[) (0] [sy
o) (=T o) [T
O []
o
o= [Cweiio Jom]s) [T 6| popmind
) S0 " S) L)
[10 [Cweia o]
& & [
_ ar3 peedun) _ m [] Wy
[[0 " g
[=T5] [=T5) [T5) 3
[8 ¥
wmog Ay
L o T [T we]r) v Los]s) g
[3 [[o 0 w [
C o | [o]]
3 w [
[eipmean] [T] s | -
[[0 u g
=15 =T =T
[] [] L)
NVN sk <y
esag NN 0 - pr.
on
Tt T T 63 T b
[%3 o O ‘ [[
e pmssnay) Peigsucuaq NYN Aoy 23 oaay

8uLog B}8Q |8Weju| pus Aowew WOH Iujod Bujleold 6890 1D @Iq8L

G-5IGE

APPENDIX H
DEFINITIONS AND ABBREVIATIONS

This appendix defines several terms and abbreviations used in this manual which are
peculiar to the MC6838 Floating Point ROM. Many of these definitions are also found in
the IEEE Proposed Standard for Binary Floating Point Arithmetic Draft 8.0.

User — The user of a floating point system Is considered to be any person, hardware, or
program having access to and controlling the operations of the programming environ-
ment.

Binary Floating Point Number — A bit string characterized by three components: a sign,
a signed exponent, and a significand. Its numerical value, if any, is the signed product of
its significand and two raised to the power of its exponent. A bit string is not always
distinguished from a number it may represent.

Exponent — That component of a binary floating point number which signifies the power
to which two is raised in determining the value of the rep ted number. Occasionally,
the exponent is called signed or unbiased exponent.

FP — An abbreviation for “floating point.”
FPCB — An abbreviation for “fioating point control block.”

Biased Exponent — The sum of the exponent and a constant (bias) chosen to make the
range of the biased exponent non-negative.

Signlificand — That component of a binary floating point number which consists of an ex-
plicit or implicit leading bit to the left of its binary point and a fraction field to the right of
the binary point.

Fraction — The field of the significand that lies to the right of its implied binary point.

Normal Zero — The exponent is the minimum established for format and the significand
is zero. Normal zero may have either a positive or negative sign. Only the extended format
has any unnormalized zeros.

Denormalized — The exponent is the minimum established for the format, the explicit or
implicit leading bit is a zero, and the number is not normal zero. To denormalize a binary
fioating point number means to shift its significand right while incrementing Its expo-
nent until it is a denormalized number.

Unnormalized — The exponent is greater than the mini ished for the extended

format and the explicit leading bit is zero. If the significand is zero, this is an unnormaliz-
ed zero.

¢

. N lize — If the ber is , 8hift its significand left while decrementing its ex-
ponent until the leading significand bit becomes one; the exponent Is regarded as if its
range were unlimited. If the significand Is zero, the number becomes normal zero. Nor-
malizing & number does not change Its sign.

Double Rounding — Double rounding occurs If any single operation causes a result to be
rounded more than once.

NAN — Not a number.

Sticky Bit — A status blt that, once set by the system as the result of some operation, re-
mains set until explicitly cleared by the user. This feature relieves the user of the con-
straint of having to examine this bit in any particular time window.

Hardware Stack — The stack defined on the MC6809 by the S (or SP) register. This stack
Is also used by the hardware during subroutine calls and interrupts.

Floating Point Package — A package of subroutines that supports the basic capabilities
required to do calculations with real numbers.

Internal Format — A format resembling extended format that is used by the MC8B39 dur-

ing calculations. It does not exist before the package is called nor does it exist after the
package returns and it is only an intermediate format.

H-2

	Front Cover
	Table of Contents
	Section 1. Introduction
	1.1 Early Approach to Mathematical Operation
	1.2 Programs-in-ROM
	1.3 MC6839 Floating Point (FP) ROM
	1.3.1 General
	1.3.2 Pin Assignment

	Section 2. Standard Floating Point Formats
	2.1 Introduction
	2.2 Normalized Numbers
	2.2.1 Single Precision Format
	2.2.2 Double Precision Format
	2.2.3 Extended Format

	2.3 Special Values (Single and Double Memory Format)
	2.3.1 Zero
	2.3.2 Infinity
	2.3.3 Small Numbers (Denormalized)
	2.3.4 Not a Number (NAN)

	2.4 Special Values (Extended Format)
	2.4.1 Zero
	2.4.2 lnfinity
	2.4.3 Denormalized Numbers
	2.4.4 NANs
	2.4.5 Unnormalized Numbers

	2.5 BCD Strings
	2.6 Binary Integers

	Section 3. Supported Operations
	3.1 Introduction
	3.2 Required Operations
	3.3 Extra Operations
	3.4 Architecture

	Section 4. Modes of Operation
	4.1 Introduction
	4.2 Rounding Modes
	4.2.1 Rounding Precision
	4.2.2 No Double Rounding

	4.3 Infinity Closure Modes
	4.3.1 Affine Closure
	4.3.2 Projective Closure

	4.4 Exception Modes

	Section 5. Floating Point Control Block
	5.1 Introduction
	5.2 Control Byte
	5.3 Status Byte
	5.4 Trap Enable Byte
	5.5 Trap Vector
	5.6 Secondary Status

	Section 6. User Interface
	6.1 Introduction
	6.2 Operation Opcodes and Entry Points
	6.3 Stack Requirements
	6.4 Calling Sequence
	6.4.1 Register Call
	6.4.2 Stack Call

	Appendices
	A -- Operation Descriptions
	A.1 Introduction
	A.2 Notation
	Operations
	ABSOLUTE VALUE
	ADD
	BINARY FLOATING TO DECIMAL STRING
	COMPARE
	DECIMAL STRING TO BINARY FLOATING POINT
	DIVIDE
	FIX
	FLOAT
	INTEGER PART
	MOVE
	MULTIPLY
	NEGATE
	REMAINDER
	SUBTRACT
	SQUARE ROOT

	B -- Application Example of the Quadratic Equation
	C -- Detailed Description of Operations
	C.1 Introduction
	C.1.1 Argument Type Matrlx
	C.1.2 Reading The Matrix Table

	C.2 Add (FADD), Subtract (FSUB)
	C.3 Multiply (FMUL)
	C.4 Divide (FDIV)
	C.5 Remainder (FREM)
	C.6 Square Root (FSQRT)
	C.7 Integer Part (FINT)
	C.8 Absolute Value (FAB)
	C.9 Negate (FNEG)
	C.10 Compare (FCMP, FTCMP, FPCMP, FTPCMP)
	C.11 Floating To Binary Integer (FFIXS, FFIXD)
	C.12 Binary Integer To Floating (FFLTS, FFLTD)
	C.13 Binary Floating To Decimal Floating String (BINDEC)
	C.14 Decimal Floating String To Binary Floating (DECBIN)
	C.15 Move (MOV)

	D -- Rounding end Exception Checking Routines
	D.1 Introduction
	D.2 Rounding
	D.3 Exception Handling
	D.3.1 Invalid Operation
	D.3.2 Underflow
	D.3.3 Overflow
	D.3.4 Division by Zero
	D.3.5 Inexact Result
	D.3.6 Integer Overflow
	D.3.7 Unordered
	D.3.8 Error Trap Handling

	D.4 Algorithms for Exception Processing
	D.4.1 Check for Invalid (CKINVALID)
	D.4.2 Test for Overflow (OVERFLOW)
	D.4.3 Overflow With Traps Disabled (OVFL NO TRAP)
	D.4.4 Subtract Bias on Overflow (SUB BIAS)
	D.4.5 Test for Underflow (UNDERFLOW)
	D.4.6 Add Bias on Underflow (ADD BIAS)
	D.4.7 Underflow With Traps Disabled (UNFL NO TRAP)

	E -- Program Details and Stack Frame Descriptlon
	E.1 Pre-Processing/Post-Processing
	E.1.1 Stack Frame
	E.1.2 FP (Floating Point) Variables
	E.1.2.1 POINTER TO FPCB (PFPCB).
	E.1.2.2 TOS (TOP OF STACK) POINTER (PTOS).
	E.1.2.3 TEMPORARY PARAMETERS (TPARAM)
	E.1.2.4 TEMPORARY STATUS (TSTAT)
	E.1.2.5 RESULT PRECISION (RPREC)
	E.1.2.6 OPCODE (FUNCT)
	E.1.2.7 STICKY BYTE (STIKY)
	E.1.2.8 ARGUMENT TYPE (TYPEx)
	E.1.2.9 SIGNX, EXPX, FRACTX

	F -- Internal Formats
	F.1 Introduction
	F.2 Single Internal Format
	F.3 Double Internal Format
	F.4 Extended Internal Format
	F.5 Zero
	F.6 Infinity
	F.7 NANs
	F.8 Internal Unnormalized Numbers

	G -- Basic Levels of Precision
	G.1 Single Precision Specification
	G.2 Double Precision Specification
	G.3 Extended Precision Specification

	H -- Definitions and Abbreviations

